

Electrochemistry-

A Question of Potential

Regina Rüffler, Georg Job

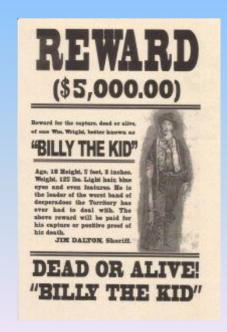
c/o. Institute of Physical Chemistry, University of Hamburg

ChemEd 2023 Conference

Guelph / Canada, 25th July 2023

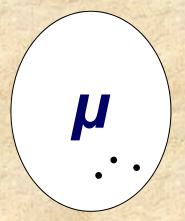
Outline

- 1. Introduction—Chemical Potential
- 2. Redox Reactions
- 3. Galvani Potential and Half-Cells
- 4. Redox Potentials and Galvanic Cells
- 5. Outlook


Fundamental Concept

We propose to introduce the chemical potential μ directly (i.e. without detour via other thermodynamic quantities) as "tendency to transform."

This "tendency to transform" is characterized by its most important and easily recognizable properties like a wanted person.


The phenomenological definition may be supplemented by a direct measuring procedure.

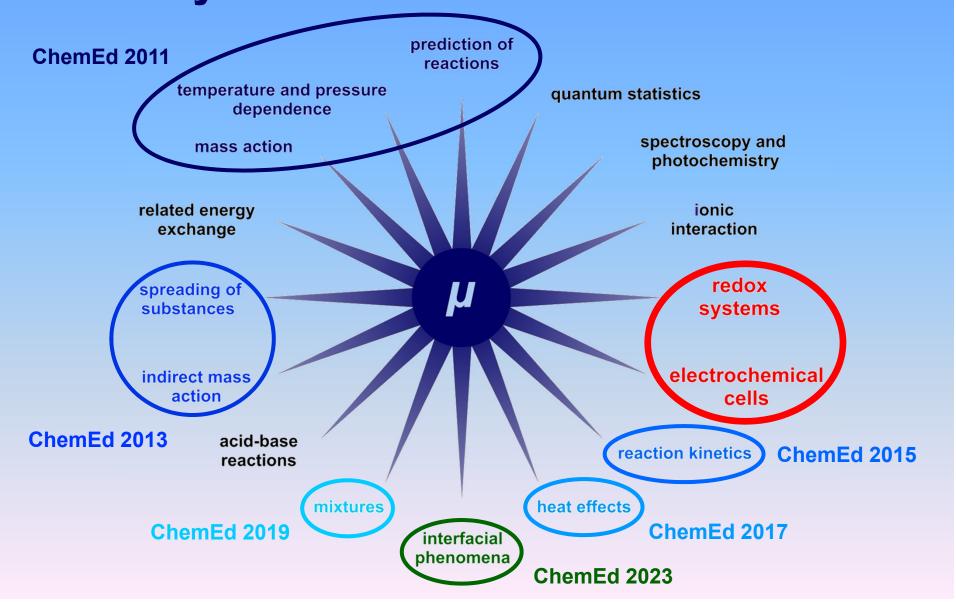
Wanted

- ♦ The tendency of a substance
 - to react with other substances,
 - to undergo a phase transition,
 - to redistribute in space,
 can be expressed by the same quantif
 —namely its chemical potential μ.

- The strength of this tendency, meaning the numerical value of μ
 - is determined by the nature of the substance, as well as
 - by its *milieu* (temperature, pressure, concentration, ...),
 - but not by the nature of reaction partners or the products.
- ♦ A reaction, transition, redistribution can only proceed spontaneously if the tendency for the process is more pronounced in the initial state than in the final state, i.e. it exists a

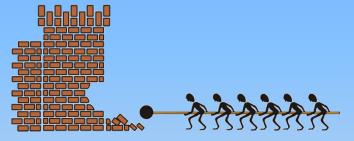
potential drop:
$$\sum_{\text{initial}} \mu_i > \sum_{\text{final}} \mu_j$$

Application


The proposed approach is elementary, does not require any special previous knowledge and immediately leads to results that can be utilized practically. This allows to start teaching the subject even at introductory high school level.

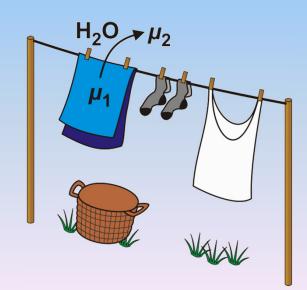
Numerous simple and safe demonstration experiments contribute essentially to deepen comprehension and forge links with everyday experiences.

Key Role of the Chemical Potential



Mass Action

The tendency μ of substances to transform depends on their amounts n or more precisely, their concentrations c (= n/V).


The more concentrated the action the more intense the effect.

Not the *mass* of a substance is decisive for mass action, but its "*massing*," its "density" in space, i.e. not the *amount*, but the *concentration*.

Example: Evaporation of water

$$\mu^{\ominus}/kG \qquad \frac{H_2O|I \rightarrow H_2O|g}{-237 < -229} \qquad [G(ibbs) = J mol^{-1}]$$

However, if the water vapor is diluted by air, the value of its chemical potential decreases below that of liquid water.

Concentration Dependence

If the concentration change $\Delta c = c - c_0$ is small, a *linear* approach can be chosen:

$$\mu = \mu_0 + \gamma \cdot (c - c_0)$$

 μ_0 : initial value of the chemical potential at the concentration c_0

concentration coefficient γ: universal quantity, i.e. it is the same for all substances in every milieu:

$$\gamma = \frac{RT}{c}$$
 for small c at constant T

combination of these two relations:

$$\mu = \mu_0 + RT \ln(c/c_0) = \mu_0 + RT \ln c_r$$
 mass action equation

2. Redox Reactions

2. Redox Reactions

Redox Reactions

It does not matter how we imagine the process in question working at the molecular level, whether it is by

- formation or cleavage of chemical bonds,
- rearranging crystal lattices,
- migration of particles or
- transfer of electrons as in the case of redox reactions.

In general, the electron donation from a simple redox pair Rd/Ox, consisting of a reducing agent Rd and a corresponding oxidizing agent Ox, can be represented by

$$Rd \rightarrow Ox + v_e e$$

 $v_{\rm e}$: conversion number of the electrons

redox pair conceivable as electron reservoir

- in state Rd completely filled,
- in state Ox completely empty.

2. Redox Reactions

Electron Potential

The exchangeable electrons in the redox system can also be assigned a chemical potential, the electron potential μ_e :

$$Rd \rightleftharpoons Ox + v_e e$$

Equilibrium condition: $\mu_{Rd} = \mu_{Ox} + v_e \mu_e$

$$\mu_{\rm e}({\rm Rd/Ox}) = \frac{1}{V_{\rm e}}(\mu_{\rm Rd} - \mu_{\rm Ox})$$

 $\mu_{\rm e}$ (Rd/Ox) describes the strength of the transfer tendency of electrons from the redox pair Rd/Ox to other substances:

 $\mu_{\rm e} < \mu_{\rm e} ({\rm Rd/Ox})$: electrons will be released to the environment ⇒ electron reservoir emptied, discharged

 $\mu_{\rm e} > \mu_{\rm e} ({\rm Rd/Ox})$: redox pair will accept electrons ⇒ electron reservoir filled, charged

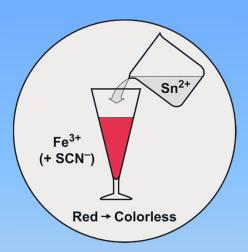
Electron Potential

The electron potential measures the maximum "electron pressure" the redox pair is able to produce and thus its *reductive capacity*. It is characteristic for each pair.

Reducing agent	/ Oxidizing agent	μ _e ⊖ / kG
K s	/ K [†] w	+283
$\frac{1}{2}$ H ₂ g + OH w	/ H ₂ O I	0
Sn ²⁺ w	/ Sn ⁴⁺ w	-14
Fe ²⁺ w	/ Fe ³⁺ w	-74
HF g + H ₂ O I	$/ \frac{1}{2} F_2 g + H_3 O^{\dagger} w$	–275

If an exchange of electrons between two redox pairs is allowed to take place, the "stronger" pair (μ_e higher) donates electrons to the "weaker" pair, which is reduced in the process.

Reduction of Fe³⁺ by Sn²⁺ ions



Procedure:

A deep red solution of iron(III) thiocyanate complexes is combined with a solution containing tin(II).

Observation:

The strong red color disappears completely in a few minutes.

Explanation:

If a tin (II) solution is added to an iron (III) solution, then according to

2 Fe³⁺|w + Sn²⁺|w
$$\rightarrow$$
 2 Fe²⁺|w + Sn⁴⁺|w

Fe³⁺ is reduced to Fe²⁺ and Sn²⁺ is oxidized to Sn⁴⁺ because due to

$$\mu^{\ominus}(Sn^{2+}/Sn^{4+}) = -14 \text{ kG} > \mu^{\ominus}(Fe^{2+}/Fe^{3+}) = -74 \text{ kG}$$

the redox pair Sn²⁺/Sn⁴⁺ is more strongly reducing than the redox pair Fe²⁺/Fe³⁺.

Galvani Potential Difference

At the boundary between two chemically different electrically conductive phases 1 and 2, an electrical potential difference is formed, a so-called Galvani potential difference (or Galvani voltage):

$$U_{1\rightarrow 2} = -\Delta \varphi = \varphi_1 - \varphi_2$$

 φ_1 , φ_2 : inner electric potentials (*Galvani potentials*)

a small amount Δn_i of a substance i having a charge

$$\Delta Q = z_i \mathcal{F} \cdot \Delta n_i$$

where z_i : charge number, \mathcal{F} : Faraday constant = 96485 C mol⁻¹

- is added to a phase with a Galvani potential of $\varphi = 0$, or
- alternatively to a second chemically identical phase with a potential of $\varphi \neq 0$
- ⇒ expended energy differs by

$$W_{\rightarrow Q} = \varphi \cdot \Delta Q = \varphi \cdot z_i \mathcal{F} \cdot \Delta n_i$$

Electrochemical Potential

The chemical potential μ_i of a substance i in a phase with a Galvani potential of $\varphi = 0$ is defined as the energy $W_{\rightarrow n}$ necessary for a small change of amount of substance related to this amount:

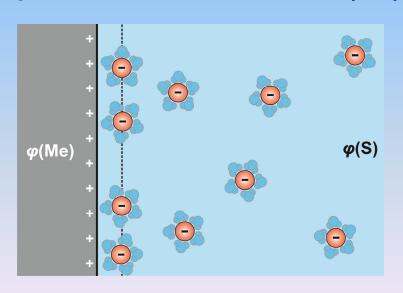
$$\mu_i = W_{\rightarrow n}/\Delta n_i$$

The value $\tilde{\mu_i}$ in a phase having $\varphi \neq 0$ must be different by the energy change $\varphi \cdot \Delta Q$ per transferred amount of substance Δn_i , i.e. by $\varphi \cdot \Delta Q/\Delta n_i = \varphi \cdot z_i \mathcal{F}$:

$$\widetilde{\mu}_i = \mu_i + \varphi \cdot z_i \mathcal{F}$$

$$\text{chemical electric term}$$

 $\tilde{\mu}_i$: electrochemical potential



Half-Cell

combination of an electrode (metal rod, etc.) and the corresponding electrolyte (also often called an electrode in a wider sense)

Metal-Metal Ion Electrode

exchange of ions J (with the charge number z_J) as the charge carrying particles between a metal (Me) and a solution (S)

electrolytic double layer

Electrochemical equilibrium:

$$\mu_{J}(Me) + z_{J} \mathcal{F} \varphi(Me) = \mu_{J}(S) + z_{e} \mathcal{F} \varphi(S)$$

$$\Delta \varphi = \varphi(Me) - \varphi(S) = -\frac{\mu_J(Me) - \mu_J(S)}{z_J F}$$

Metal-Metal Ion Electrode

Metal: made up of freely moving negative electrons and positive metal ions arranged on lattice sites

$$\mu(Me) = \mu_J(Me) + z_J \mu_e(Me)$$
 $\mu_J(Me) = \mu(Me) - z_J \mu_e(Me)$

Solution: chemical potential of the metal ions in the solution dependent from the concentration (mass action equation)

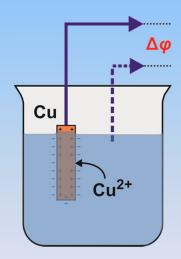
$$\mu_{J}(S) = \stackrel{\circ}{\mu}_{J}(S) + RT \ln(c_{J} / c^{\ominus}) = \stackrel{\circ}{\mu}_{J}(S) + RT \ln c_{r,J}$$

Inserting $\mu_{J}(Me)$ and $\mu_{J}(S)$ yields

$$\Delta \varphi = \varphi(Me) - \varphi(S) = -\frac{[\mu(Me) - z_J \mu_e(Me)] - [\mu_J(S) + RT \ln c_{r,J}]}{z_J F}$$

and finally

$$\Delta \varphi = \frac{\overset{\circ}{\mu_{J}}(S) - \mu(Me) + z_{J}\mu_{e}(Me)}{z_{J}F} + \frac{RT}{z_{J}F} \ln c_{r,J}$$



Metal-Metal Ion Electrode

$$\Delta \varphi = \Delta \varphi \circ + \frac{RT}{z_{\mathsf{J}}F} \ln c_{\mathsf{r},\mathsf{J}}$$

NERNST equation

Copper-copper ion electrode as an example of a metal-metal ion electrode

$$\Delta \varphi = \Delta \varphi^{\circ} + \frac{RT}{2\mathcal{F}} \ln \frac{c(Cu^{2+})}{c^{\ominus}}$$

Ion-Ion Electrode

a chemically indifferent metal such as platinum (Pt) is immersed in a solution of a redox pair Rd/Ox

⇒ no exchange of metal ions possible, but that of electrons

$$\Delta \varphi = \varphi(\mathsf{Pt}) - \varphi(\mathsf{S}) = -\frac{\mu_{\mathsf{e}}(\mathsf{Pt}) - \mu_{\mathsf{e}}(\mathsf{S})}{z_{\mathsf{e}}\mathcal{F}} = \frac{\mu_{\mathsf{e}}(\mathsf{Pt}) - \mu_{\mathsf{e}}(\mathsf{S})}{\mathcal{F}}$$

Electron potential of the redox pair in the solution:

$$\mu_{e}(S) = \mu_{e}(Rd/Ox) = \frac{1}{V_{e}}(\mu_{Rd} - \mu_{Ox})$$

Considering the effect of mass action, the following results

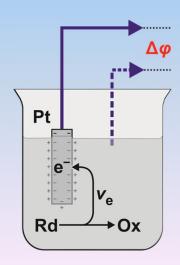
$$\mu_{e}(S) = \frac{1}{v_{e}} \left[\left(\stackrel{\circ}{\mu}_{Rd} + RT \ln(c_{Rd}/c^{\ominus}) - \left(\stackrel{\circ}{\mu}_{Ox} + RT \ln(c_{Ox}/c^{\ominus}) \right) \right]$$

or also

$$\mu_{\rm e}(S) = \frac{1}{V_{\rm e}} [(\dot{\mu}_{\rm Rd} - \dot{\mu}_{\rm Ox}) + RT \ln(c_{\rm Rd}/c_{\rm Ox})]$$

Ion-Ion Electrode

Inserting these results yields:


$$\Delta \varphi = \varphi(Pt) - \varphi(S) = \frac{v_e \mu_e(Pt) + \mathring{\mu}_{Ox} - \mathring{\mu}_{Rd}}{v_e F} + \frac{RT}{v_e F} \ln \frac{c_{Ox}}{c_{Rd}}$$

$$\Delta \varphi^{\circ}$$

$$\Delta \varphi = \Delta \varphi^{\circ} + \frac{RT}{v_{e}F} \ln \frac{c_{Ox}}{c_{Rd}}$$

NERNST equation

 $c_{\rm Ox}$ << $c_{\rm Rd}$: electron reservoir Rd/Ox almost completely filled \Rightarrow strong tendency to donate electrons to the noble metal

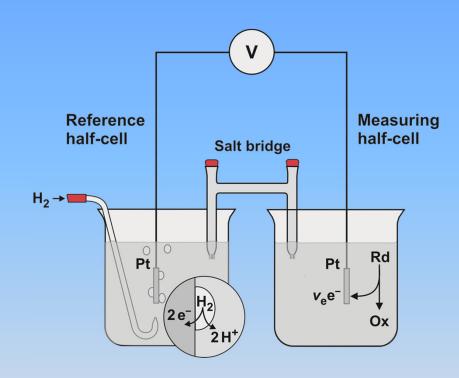
Example: Redox pair of bivalent and trivalent iron ions

$$\Delta \varphi = \Delta \varphi^{\circ}(\text{Fe}^{2+}/\text{Fe}^{3+}) = \frac{RT}{\mathcal{F}} \ln \frac{c(\text{Fe}^{3+})}{c(\text{Fe}^{2+})}$$

Redox Potentials

Problem: Galvani potential difference across a single interface not directly measurable, because connection of the electrolyte solution to an electrical measuring device by a second electrode produces a new interface with an additional Galvani potential difference

Way out: Use of a reference half-cell which is always the same, so that the measured total voltage is only determined by the measuring half-cell


usual reference half-cell: standard hydrogen electrode (SHE)

heterogeneous redox pair: H₂/H⁺ (hydrogen gas at standard pressure of 100 kPa / solution of hydrogen ions with pH value of 0)

$$\Rightarrow \mu_{e}(H_{2}/H^{+}) = \stackrel{\circ}{\mu_{e}}(H_{2}/H^{+})$$
 resp. for $T = 298 \text{ K}: \mu_{e}^{\ominus}(H_{2}/H^{+}) = 0$

Redox Potentials

Measuring set-up:

- reference half-cell: standard hydrogen electrode
- salt bridge to avoid the diffusion voltage
- currentless measurement

$$-U = \Delta \varphi(\text{left}) + \Delta \varphi(\text{right})$$

disturbing potentials negligible

$$-U = [\varphi(S)_{I} - \varphi(Pt)_{I}] + [\varphi(Pt)_{r} - \varphi(S)_{r}]$$

$$-\Delta \varphi(ref) \qquad \Delta \varphi(meas)$$

Redox potential *E*: $E = \Delta \varphi(\text{meas}) - \underbrace{\Delta \varphi^{\ominus}(H_2/H^+)}$

Redox Potentials

The redox potentials under standard conditions (i.e. T^{\ominus} = 298 K, p^{\ominus} = 100 kPa, c^{\ominus} = 1 kmol m⁻³ in aqueous solutions) are often compiled according to their values in a table, the so-called electrochemical series.

Half-cell	Electrode reaction	<i>E</i> [⊖] / V
Zn Zn ²⁺	Zn ²⁺ + 2 e [−] ↔ Zn	-0.762
Pb Pb ²⁺	$Pb^{2+} + 2 e^{-} \leftrightarrow Pb$	-0.126
Cu Cu ²⁺	Cu ²⁺ + 2 e ⁻ ↔ Cu	+0.342
Ag Ag ⁺	$Ag^+ + e^- \leftrightarrow Ag$	+0.800
Pt H ₂ H ⁺	$2 H^{+} + 2 e^{-} \leftrightarrow H_{2}$	0.000
Pt Sn ²⁺ ,Sn ⁴⁺	$\operatorname{Sn}^{4+} + 2 e^{-} \leftrightarrow \operatorname{Sn}^{2+}$	+0.151
Pt Fe ²⁺ ,Fe ³⁺	$Fe^{3+} + e^{-} \leftrightarrow Fe^{2+}$	+0.771

Galvanic Cells

Initially, the reaction of zinc shavings with copper sulfate solution is considered:

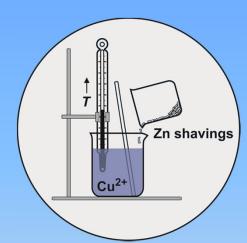
total reaction: $Zn|s + Cu^{2+}|w \rightarrow Zn^{2+}|w + Cu|s$

half-reactions: Zn|s \rightarrow Zn²⁺|w + 2 e⁻

 $Cu^{2+}|w + 2e^- \rightarrow Cu|s$

potential difference: $\Delta \mu = [\mu(Zn^{2+}) + \mu(Cu)] - [\mu(Zn) + \mu(Cu^{2+})]$

Reduction of Cu²⁺ ions by Zinc



Procedure:

Zinc shavings are poured into a saturated copper sulfate solution.

Observation:

They precipitate densely and immediately turn black. The precipitate then slowly turns coppery brown. The temperature

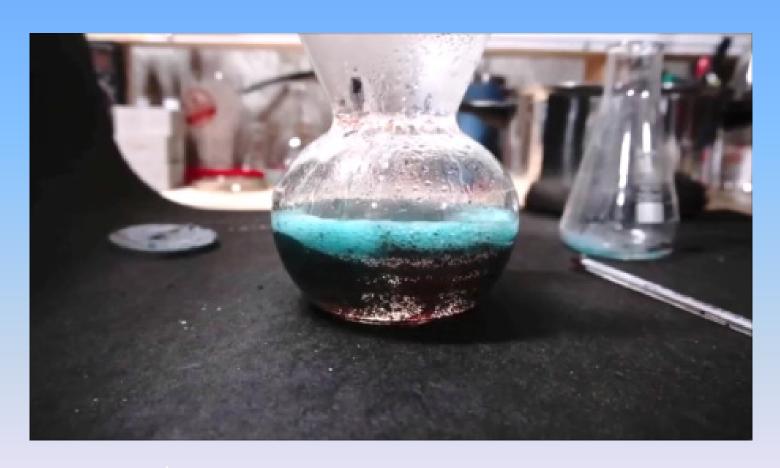
rises considerably. The solution eventually becomes colorless.

Explanation:

If zinc shavings are added to a cupper (II) solution, then according to

$$Zn|s + Cu^{2+}|w \rightarrow Zn^{2+}|w + Cu|s$$

Zn is oxidized to Zn²⁺ and Cu²⁺ is reduced to Cu because due to


$$\mu^{\ominus}(Zn/Zn^{2+}) = +66 \text{ kG} > \mu^{\ominus}(Cu/Cu^{2+}) = -147 \text{ kG}$$

the pair Zn/Zn²⁺ is more strongly reducing than the pair Cu/Cu²⁺.

Reduction of Cu²⁺ ions by Zinc

https://www.youtube.com/watch?v=kxQOLDPbAGc

Galvanic Cells

Initially, the reaction of zinc shavings with copper sulfate solution is considered:

total reaction: $Zn|s + Cu^{2+}|w \rightarrow Zn^{2+}|w + Cu|s$

half-reactions: $Zn|s \rightarrow Zn^{2+}|w + 2e^{-}$

 $Cu^{2+}|w + 2e^- \rightarrow Cu|s$

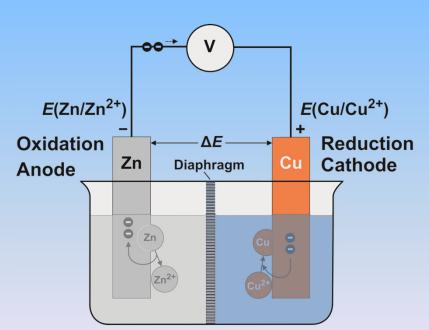
potential difference: $\Delta \mu = [\mu(Zn^{2+}) + \mu(Cu)] - [\mu(Zn) + \mu(Cu^{2+})]$

chemical energy W_{ξ} occurring at a conversion $\Delta \xi$ of the total reaction given by

$$W_{\xi} = [[\mu(Zn^{2+}) + \mu(Cu)] - [\mu(Zn) + \mu(Cu^{2+})]] \cdot \Delta \xi$$

with $\xi = \frac{n_i - n_{i,0}}{v_i}$ (extent of reaction)

is released (W_{ξ} < 0) and "burnt up" under entropy generation



Galvanic Cells

half-reactions can alternatively be spatially separated from each other by dividing them into two half-cells of a galvanic cell where they are connected to each other by an external circuit

⇒ DANIELL cell

currentless measured voltage of the cell:

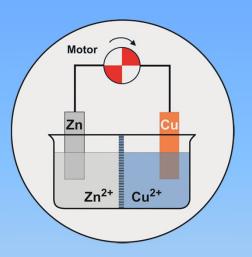
$$-U = \Delta E = E(Cu/Cu^{2+}) - E(Zn/Zn^{2+})$$

with ΔE : "reversible cell voltage"

under standard conditions:

$$\Delta E^{\ominus}$$
 = +0,340 V - (-0,763 V)
= +1,103 V

The chemical reaction (divided into two partial reactions) can also be used to drive an electron current.



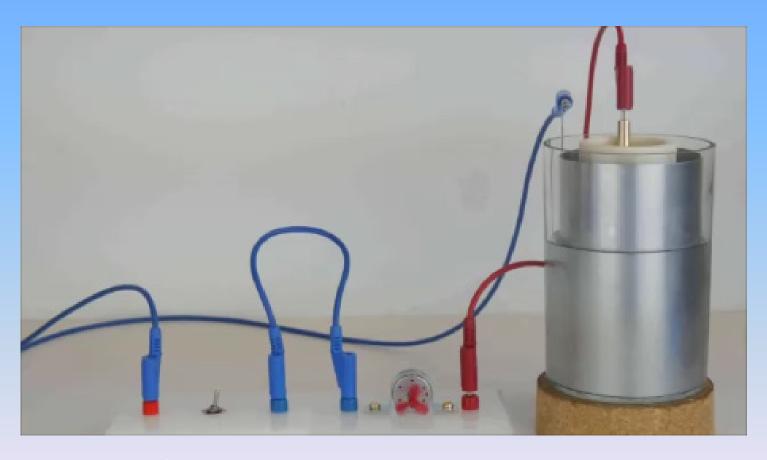
DANIELL Cell

Procedure:

Zinc sulfate solution is filled into the crystallizing dish and copper sulfate solution into the flower pot. Then the zinc and copper electrodes are immersed and connected to the voltmeter or the electric motor.

Observation:

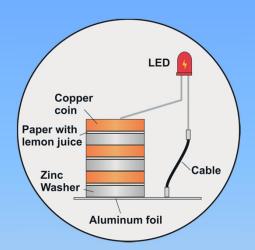
A voltage of about 1 V can be measured; the motor is running.


Explanation:

The DANIELL cell enables the direct conversion of chemical energy into electrical energy. The necessary electrical contact between the electrolyte solutions is achieved via the clay wall of the pot (diaphragm).

DANIELL Cell

https://www.youtube.com/watch?v=91Ih23dEplc



Homemade VOLTAic Pile

Procedure:

Zinc washers, pieces of paper soaked with lemon juice and copper coins are alternately piled to form a stack on a aluminum strip. Then, a LED is connected with the copper coin on top and the aluminum strip.

Observation:

The LED lights up.

Explanation:

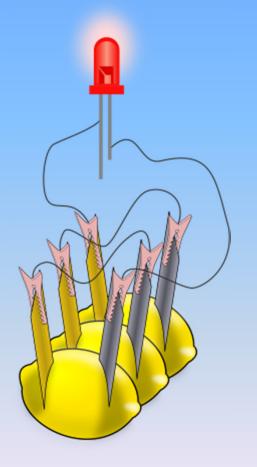
The half-reaction that occurs at the anode, where oxidation takes place, is the same as in the DANIELL cell, meaning

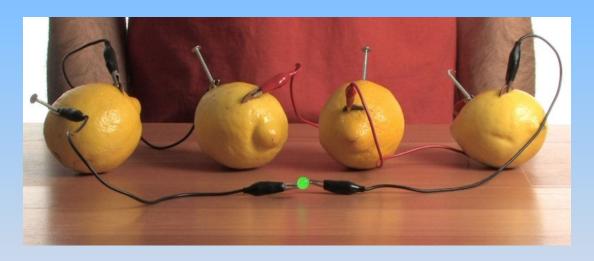
$$Zn|s \rightarrow Zn^{2+}|w + 2 e^{-}$$
.

At the copper electrode, however, H⁺ ions are reduced to H₂ gas,

2 H⁺|w + 2 e⁻
$$\rightarrow$$
 H₂|g.

Homemade VOLTAic Pile




https://www.job-stiftung.de/videos/Voltaic_Pile.mp4

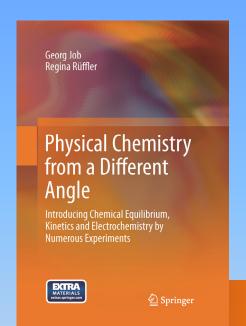
Lemon Battery

https://stevespangler.com/experiments/fruit-power-battery/

5. Outlook

Application

The DANIELL cell and the VOLTAic pile represent historical designs of galvanic cells. However, with the fundamental understanding of these cells, the gateway to


technically important galvanic cells such as batteries, accumulators or fuel cells is open to us.

In the last decades, electrochemistry has witnessed a renaissance, especially because of the strongly increasing importance of electromobility.

Georg Job, Regina Rüffler
Physical Chemistry from a
Different Angle

An introduction with new concept and numerous experiments

ISBN 978-3-319-15665-1

Physical Chemistry from a Different Angle Workbook

Exercises and solutions

Springer

Georg Job, Regina Rüffler
Physical Chemistry from a
Different Angle Workbook

Collection of exercises with detailed solutions to accompany the textbook

ISBN 978-3-030-28490-9

Thank you very much for your friendly attention.

Further information

(PowerPoint Presentation, instructions for the experiments, videos, etc.):

www.job-foundation.org
and facebook presence

@JobFoundationPhysChem