Chemical Potential from the Beginning

Regina Rüffler, Georg Job

c/o. Institute of Physical Chemistry, University of Hamburg

ChemEd 2011

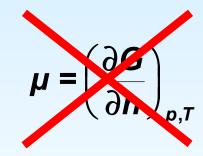
Kalamazoo / USA, July 28, 2011

Introduction

The benefit of chemical thermodynamics is beyond question but the field is reputed to be difficult to learn. One of its most important fundamental quantities, the chemical potential μ , commonly defined as the partial derivative

$$\boldsymbol{\mu} = \left(\frac{\partial \boldsymbol{G}}{\partial \boldsymbol{n}}\right)_{\boldsymbol{p}, \boldsymbol{T}}$$

of a quantity which involves energy and entropy, seems especially hard to grasp.



Introduction

However, there is a simpler and faster way to an understanding of this quantity that does not make use of formal mathematics.

We propose to introduce μ as a basic concept in analogy to quantities such as length, mass etc. This approach allows to teach the subject even at introductory high school level. Selected simple and safe demonstration experiments help to strengthen the understanding.

Outline

- 1. Chemical Potential as Basic Concept
- 2. Main Characteristics of the Chemical Potential
- 3. Quantifying the Chemical Potential
- 4. First Applications
- 5. Influence of the Milieu
- 6. Mass Action A Question of the Milieu
- 7. Outlook

1. Chemical Potential as Basic Concept

1. Chemical Potential as Basic Concept

Understanding the Chemical Potential

Starting point: Everyday experience that things around us change their shape and composition more or less rapidly (HERACLITUS: "Everything flows – Nothing stands still"), e.g.

- Bread dries out,Iron rusts,

Rocks weather etc.

but also change

- Tinned food in an unopened can or chemicals in a sealed bottle
- ⇒ Substances tend to transform by themselves, i.e. we can ascribe to each and every substance an inherent "tendency to transform"

The chemical potential μ can be interpreted as measure for the general tendency of matter to transform

Basis of phenomenological characterization

1. Chemical Potential as Basic Concept

Phenomenological Characterization

Definition: An object or living being is characterized by its external properties (and not by its internal structure).

For identifying for example a person often a few characteristic traits are sufficient:

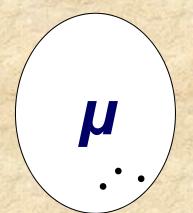
- height: 5 feet 3 inches - weight: 129 lbs

- light hair - blue eyes

- 18 years old - dangerous desperado

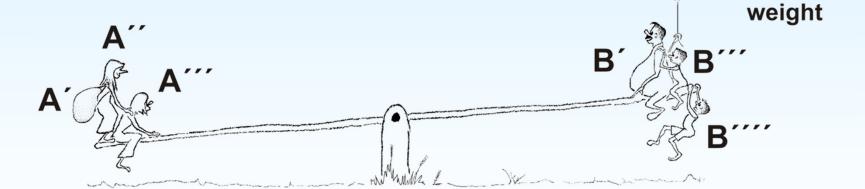
The "bundle" of these characteristics is basically what makes up a person; his or her name is just an identification code for this list.

Our intent is to design a kind of "wanted poster" for the chemical potential μ that allows it to be defined as measurable physical quantity.



- The tendency of a substance
 - to react with other substances,
 - to undergo a phase transition,
 - to *redistribute* in space, can be expressed by the same quantity
 - namely its chemical potential μ .
- The magnitude of this tendency, meaning the numerical value of μ
 - is determined by the nature of the substance, as well as
 - by its *milieu* (temperature, pressure, concentration, ...),
 - but not by the nature of reaction partners or the products.
- ♦ A reaction, transition, redistribution can only proceed spontaneously if the tendency for the process is more pronounced in the initial state than in the final state, i.e. it exists a

potential drop:
$$\sum_{\text{initial}} \mu_i > \sum_{\text{final}} \mu_j$$
.



negative

Weight as Model

The "weight" may serve as a simple model for the *direct metricization* of a physical quantity.

Just the sum of the weights *G* on each side – positive or negative ones – determines, to which side the seesaw leans.

Generally:

The left side wins if Equilibrium is reached when

$$G(A') + G(A'') + ... > G(B') + G(B'') + ...$$

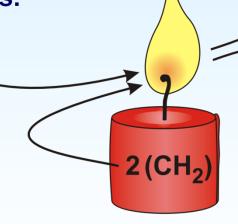
B''

$$G(A') + G(A'') + ... = G(B') + G(B'') + ...$$

 $2H_2O$

Competition between Substances

The sum of the chemical potentials μ on each side of the reaction equation


$$A' + A'' + ... \rightarrow B' + B'' + ...$$

positive or negative ones – determines,
 in which direction a reaction tends.

3O₂

The candle burns, because

$$3 \mu(O_2) + 2 \mu((CH_2)) >$$

 $2 \mu(CO_2) + 2 \mu(H_2O).$

Generally:

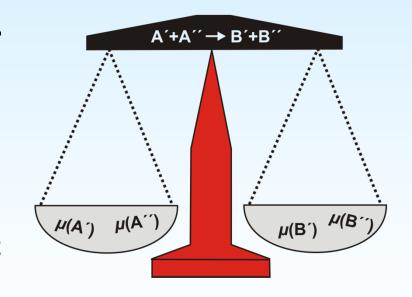
The left side "wins" if

Equilibrium is reached when

$$\mu(A') + \mu(A'') + ... > \mu(B') + \mu(B'') + ...$$

 $2CO_2$

$$\mu(A') + \mu(A'') + ... = \mu(B') + \mu(B'') + ...$$



Metricization of the Chemical Potential

Each substance shows a *tendency to transform* (to *react*, to undergo a phase *transition*, to *redistribute*). A measure μ of this tendency can be defined in a way analogously to that for the weight.

Each realizable reaction is comparable to a kind of scale which allows the comparison of chemical potentials or their sums, respectively.

But the measurement is often impossible due to inhibitions. In that case, we have to use indirect methods.

Because we are interested in a first basic knowledge of the chemical potential, we consider the values at the moment as given.

Reference Level of Chemical Potentials

The heights of mountains are not referred to the geocentre but to the sea level,

temperatures in everyday life are not referred to absolute zero but to the freezing point of water.

It is similarly practical to choose for the values of the chemical potential a convenient *reference level*, for example the *pure elements* in their most stable modification under standard conditions (298 K and 100 kPa). Their chemical potential μ^{\ominus} is zero per definition.

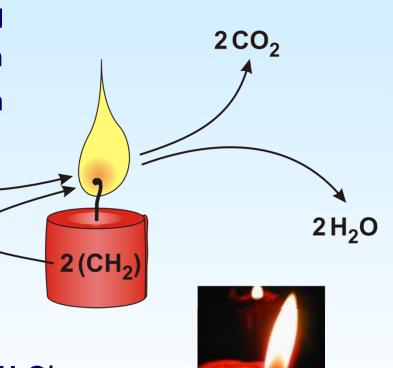
For dissolved substances the concentration c in addition to p and T has to be specified (usual reference value: 1 kmol/m³ = 1 mol/L).

lons can be assigned a chemical potential as well. The most commonly appearing type of ion, H⁺, receives the μ^{Θ} value of zero.

Examples for Values of Chemical Potentials

Pure and dissolved substances at standard conditions (298 K, 100 kPa)

Substance	Formula	μ [⊖] / k G ~	- Unit: Gibbs, short G (= J/mol)
Iron	Fe s	0	$\mu = 0$ valid for elements
Water	H ₂ O I	–237	μ < 0 means that the sub-
Marble	CaCO ₃ s	–1129	stance can be produced spon-
Cane sugar	$C_{12}H_{22}O_{11} s$	-1558	taneously from the elements.
Paraffin wax	≈(CH ₂) s	+4	$\mu > 0$ means that the sub-
Benzene	C ₆ H ₆ I	+125	stance tends to decompose
Ethyne	$C_2H_2 g$	+210	into the elements.
Cane sugar	$C_{12}H_{22}O_{11} w$	-1565	
A mmonia	NH ₃ w	–27	additionally specified standard concentration of $c = 1 \text{ kmol/m}^3$
Calcium(II)	Ca ²⁺ w	-554	



Prediction of Possible Reactions

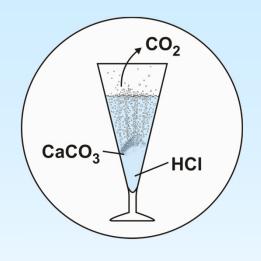
If the chemical potentials of all substances in question are known, then their useful application is very simple. In order to predict whether a process can happen spontaneously or not we only need to compare the sum of potentials in the initial and the final state of the reaction.

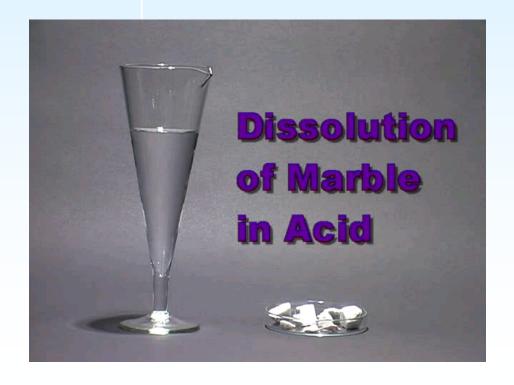
$$3 O_{2}|g + 2 (CH_{2})|s \rightarrow 2 CO_{2}|g + 2 H_{2}O|g$$

$$\mu^{\ominus}/kG \qquad 3 \cdot 0 \qquad + 2 \cdot (+4) \qquad > 2 \cdot (-394) + 2 \cdot (-229)$$

$$+8 \qquad > -1246$$

process possible!

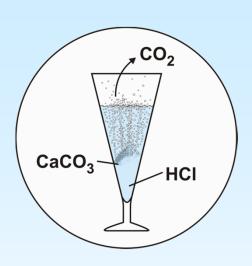




Dissolution of Marble

Procedure:

Pieces of marble are thrown into hydrochloric acid.


Dissolution of Marble

Procedure:

Pieces of marble are thrown into hydrochloric acid.

Observation:

A strong effervescence can be observed.

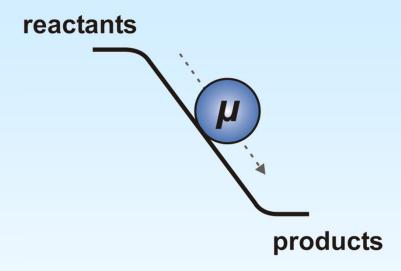
Explanation:

Calcium carbonate is dissolved by hydrochloric acid, thereby forming gaseous carbon dioxide:

CaCO₃|s + 2 H⁺|w
$$\rightarrow$$
 Ca²⁺|w + H₂O|I + CO₂|g

 μ [©]/kG

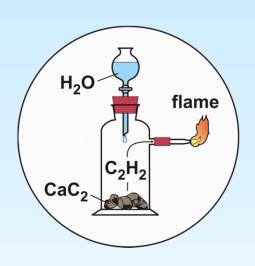
(-1129) + 2·0 > (-554) + (-237) + (-394)

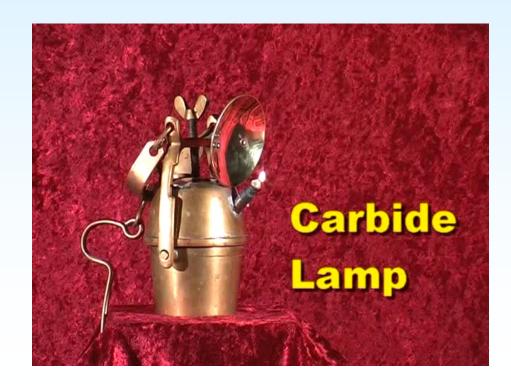

-1129 > -1185

Preparation of Substances with Positive μ

As discussed a reaction always runs in the direction of a potential drop. This might give students or pupils the impression that substances with a positive potential cannot ever be prepared by normal reactions of stable substances (with negative μ).

The preparation of ethyne (acetylene) with a high positive chemical potential from calcium carbide and water shows that this is not the case.

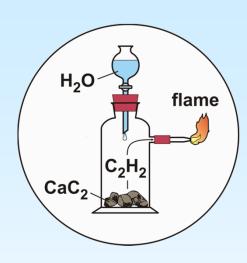




Carbide Lamp

Procedure:

Water is dripped cautiously onto some grayish brown lumps of calcium carbide.


Carbide Lamp

Procedure:

Water is dripped cautiously onto some lumps of calcium carbide.

Observation:

The produced gaseous ethyne burns with a bright and sooty flame.

Explanation:

Calcium carbide reacts with water under formation of ethyne (acetylene) according to

CaC₂|s + 2 H₂O|I → Ca(OH)₂|s + C₂H₂|g

$$\mu^{\ominus}$$
/kG (-65) + 2·(-237) > (-898) + (+210)
-539 > -688

also substances with positive μ can be produced

5. Influence of the Milieu

Temperature and Pressure Dependence

Only in a zero approximation μ can be considered to be constant.

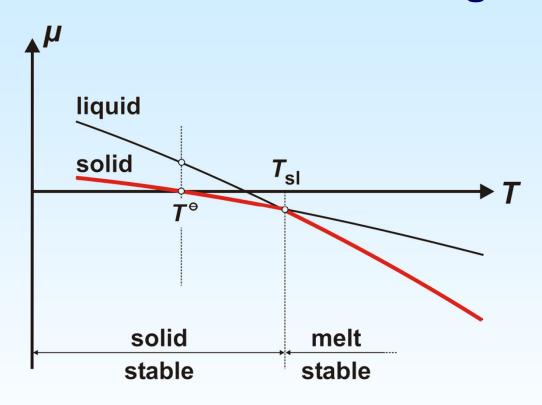
A more detailed approach considers the temperature and pressure dependence of μ . Often linear approximations are sufficient:

$$\mu = \mu_0 + \alpha \cdot (T - T_0) \qquad \qquad \mu = \mu_0 + \beta \cdot (p - p_0)$$

 μ_0 : initial value of the chemical potential

For the *temperature coefficients* α and *pressure coefficients* β of the chemical potential of a substance B the following rules are valid:

$$\alpha(B|g) \lessdot \alpha(B|I) \lessdot \alpha(B|s) \lessdot 0$$


$$0 \lessdot \beta(B|s) \lessdot \beta(B|I) \lessdot \langle \beta(B|g) \rangle$$

Already these qualitative rules allow many useful conclusions.

Melting Point

Determination of T_{sl} : Condition for equlibrium:

$$\mu_s = \mu_l$$

Linear approach:

$$\mu_{s,0} + \alpha_s (T_{sl} - T_0) = \\
\mu_{l,0} + \alpha_l (T_{sl} - T_0)$$

Calculation of $T_{\rm sl}$:

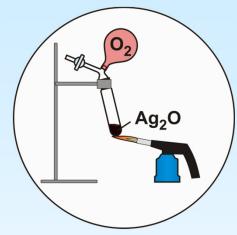
$$T_{\rm sl} = T_0 - \frac{\mu_{\rm s,0} - \mu_{\rm l,0}}{\alpha_{\rm s} - \alpha_{\rm l}}$$

e.g. Pb: $T_{sl} \approx 620 \text{ K (meas. 601 K)}$

The chemical potentials decrease with warming and this happens more quickly in the liquid state than in the solid $(\alpha(B|I) < \alpha(B|s) < 0)$.

 \Rightarrow The curves intersect at the *melting temperature* T_{sl} .

5. Influence of the Milieu

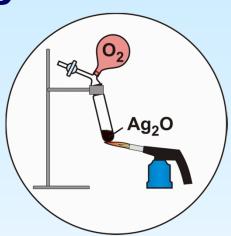


Annealing of Silver Oxide

Procedure:

Blackish brown silver oxide is heated by a burner.

5. Influence of the Milieu


Annealing of Silver Oxide

Procedure:

Blackish brown silver oxide is heated by a burner.

Observation:

The presence of oxygen can be demonstrated with a glowing splint. White shiny silver metal remains in the test tube.

Explanation:

The thermal decomposition of silver oxide can be described by:

$$2 \ Ag_2O|s \rightarrow 4 \ Ag|s \ + O_2|g$$

$$\mu^{\ominus}/kG$$
 2·(-11) < 4·0 + 0 reaction not possible! $\alpha/G \ K^{-1}$ 2·(-121) 4·(-43) -205

decomposition temperature $T_D \approx 465$ K (calculable similarly to T_{sl})

Influence of Pressure

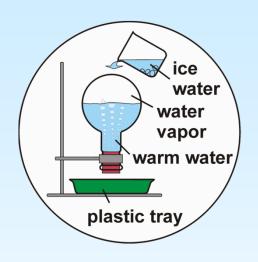
Because of

$$0 < \beta(B|s) < \beta(B|I) < << \beta(B|g)$$

an increase in pressure results in an increasing chemical potential, but the increase is different for the different states of aggregation with the smallest change in the solid state. Therefore, at high pressures the solid state is normally preferred compared to the others.

Conversely, a pressure reduction results in the preference of the gaseous state.

5. Influence of the Milieu

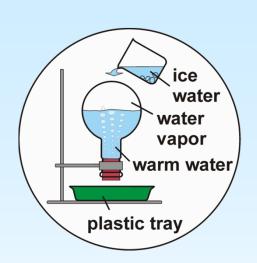


Boiling by Cooling

Procedure:

Ice water is poured over a flask filled with warm water and water vapor.

5. Influence of the Milieu


Boiling by Cooling

Procedure:

Ice water is poured over a flask filled with warm water and water vapor.

Observation:

The water begins to boil heavily.

Explanation:

The boiling process can be described by

$$H_2O|I \rightarrow H_2O|g$$

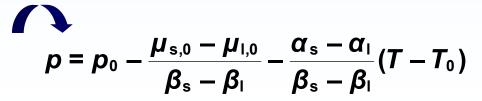
process not possible!

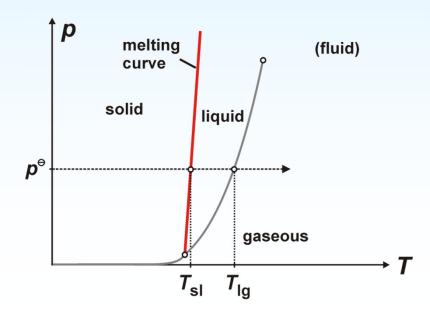
 β/μ G Pa⁻¹ 18.1 24.3·10³

The chemical potential of water vapor, a gas, is strongly pressure dependent (β very large). At sufficiently low pressure (here caused by condensation of water vapor) we obtain already at temperatures much lower than 100°C: $\mu(H_2O|I) > \mu(H_2O|g)$.

Phase Diagram

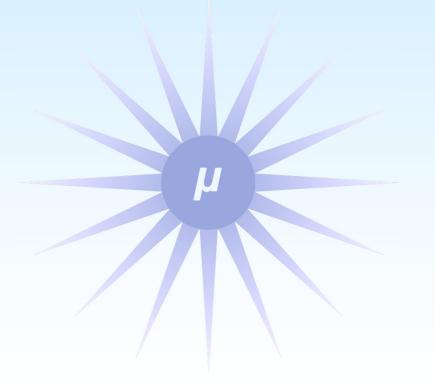
A simultaneous temperature and pressure dependence can be described by

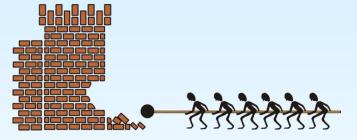

$$\mu = \mu_0 + \alpha \cdot (T - T_0) + \beta \cdot (p - p_0)$$


By use of this equation the *phase diagram* of a substance can be calculated if the phase transition is formulated as reaction and the equilibrium condition is considered, for example the melting process:

$$B|s \rightarrow B|I$$
 $\mu_s = \mu_I$

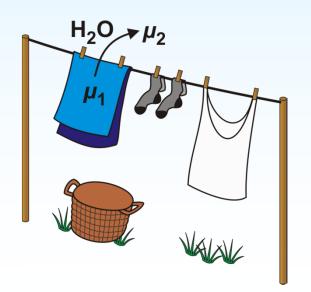
Calculation of the melting curve:


$$\mu_{s,0} + \alpha_s \cdot (T - T_0) + \beta_s \cdot (p - p_0) = \mu_{l,0} + \alpha_l \cdot (T - T_0) + \beta_l \cdot (p - p_0)$$



Mass Action

The tendency μ of substances to transform depends also on their amounts n or more precisely, their concentrations c (= n/V).


The more concentrated the action the more punching the effect.

Not the *mass* of a substance is decisive for mass action, but its "*amassing*", its distribution in space, i.e. not the *amount*, but the *concentration*.

Example: *Evaporation* of water

$$\mu^{\Theta}/kG \qquad \frac{H_2O|I \rightarrow H_2O|g}{-237} < -229$$

However, if the water vapor is diluted by air, the value of its chemical potential decreases below that of liquid water.

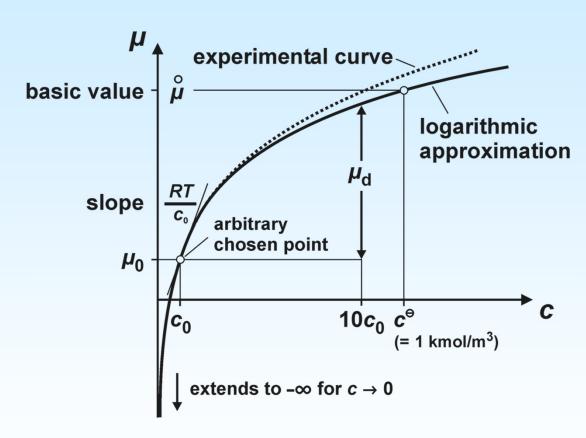
Concentration Dependence I

If the concentration change $\Delta c = c - c_0$ is small, again a linear approach can be chosen:

$$\mu = \mu_0 + \gamma \cdot (c - c_0)$$

While α and β (except for gases) still depend from the type and the milieu of the given substance the *concentration coefficient* γ is a *universal quantity*, that means it is the same for all substances in every milieu:

$$\gamma = \frac{RT}{c}$$
 for small c at constant T


The combination of these two relations results in the so-called "mass action equation:"

$$\mu = \mu_0 + RT \ln(c/c_0) = \mu_0 + RT \ln c_r$$
 mass action equation

Concentration Dependence II

The basic value μ of the chemical potential of the dissolved substance (i.e. the value for the standard concentration $c^{\ominus} = 1 \text{ kmol/m}^3$) coincides with the logarithmic approximation and not with the measured function!

If the concentration c increases one decade (a factor of ten), the chemical potential always increases by the same amount, the "deca potential" μ_d (5.71 kG \approx 6 kG at 298 K).

Mass Action Law

A very important application is the derivation of the "mass action law."

Considering a general reaction

$$B + C + ... \rightarrow D + E + ...$$

equilibrium is established when the potential gradient disappears, i.e.

$$\mu_{\rm B} + \mu_{\rm C} + ... = \mu_{\rm D} + \mu_{\rm E} + ...$$

Application of the mass action equation (valid for small c):

$$\stackrel{\circ}{\mu}_{B} + RT \ln c_{r}(B) + \stackrel{\circ}{\mu}_{C} + RT \ln c_{r}(C) + \dots = \stackrel{\circ}{\mu}_{D} + RT \ln c_{r}(D) + \stackrel{\circ}{\mu}_{E} + RT \ln c_{r}(E) + \dots$$

From this follows:

$$\frac{c_{r}(D) \cdot c_{r}(E) \cdot ...}{c_{r}(B) \cdot c_{r}(C) \cdot ...} = \exp \left(\frac{\overset{\circ}{\mu}_{B} + \overset{\circ}{\mu}_{C} + ... - \overset{\circ}{\mu}_{D} - \overset{\circ}{\mu}_{E} - ...}{RT} \right) = \overset{\circ}{K}_{C}$$

equilibrium constant

Iron(III) Thiocyanate Equilibrium

Procedure:

A pale orange diluted iron thiocyanate solution is treated alternatively with excess iron(III) or excess thiocyanate.

Iron(III) Thiocyanate Equilibrium

Procedure:

A pale orange diluted iron thiocyanate solution is treated alternatively with excess iron(III) or excess thiocyanate.

Observation:

The color gets deep red in both cases.

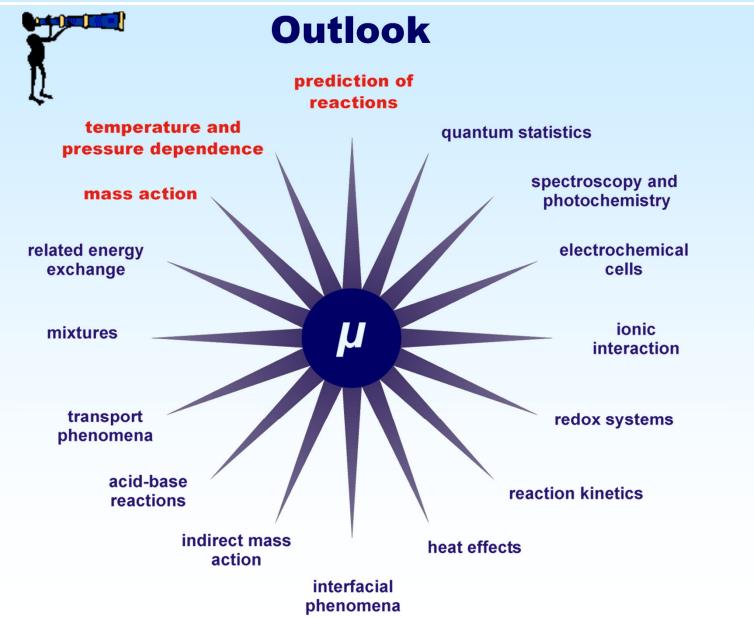
Explanation:

The equilibrium can be described simplifying according to

$$[Fe(H_2O)_6]^{3+} + 3 SCN^- \iff [Fe(H_2O)_3(SCN)_3] + 3 H_2O,$$

the corresponding mass action law is:
$$\overset{\circ}{K}_c = \frac{c([Fe(H_2O)_3(SCN)_3])}{c([Fe(H_2O)_6]^{3+}) \cdot c(SCN^-)^3}$$

The addition of water shifts the equilibrium in direction of the reactants, that of iron(III) or thiocyanate again in direction of the products.


7. Outlook

7. Outlook

Thank you very much for your friendly attention.

Further information (lecture notes, descriptions of experiments, videos etc.):

www.job-foundation.org