Reduction of Fe³⁺ ions by Sn²⁺ ions

Equipment:

goblet (conical glass cup) glass beaker (50 mL) graduated cylinder dropper glass rod

Chemicals:

iron (III) nitrate solution (ca. 0.2 kmol m⁻³)

(e.g. 20 g of Fe(NO₃)₃ 9H₂O dissolved in 250 mL of water)

acidified tin(II) chloride solution (ca. 1 kmol m⁻³)

(e.g. 5 g of $SnCl_2 2H_2O$ dissolved in 20 mL of Wasser and 1 mL of concentrated hydrochloric acid)

ammonium thiocyanate solution (ca. 1 kmol m⁻³)

(e.g. 7.6 g of NH₄SCN dissolved in 100 mL Wasser)

deionized water

Safety:

iron(III) nitrate nonahydrate (Fe(NO₃)₃ 9H₂O):

H272, H315, H319 P302 + P352, P305 + P351 + P338

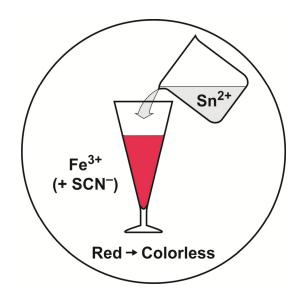
tin(II) chloride dihydrate (SnCl₂ 2H₂O):

H302, H315, H317, H319, H335 P280, P302 + P352, P305 + P351 + P338

ammonium thiocyanate (NH₄SCN):

H332, H312, H302, H412 P273, P302 + P352

It is required to wear safety glasses and protective gloves; if possible, the experiment should be carried out in a fume hood.


Procedure:

<u>Preparation:</u> 5 mL of the iron(III) nitrate solution are poured into the goblet and made up to 150 mL with deionized water. 20 mL of the tin (II) chloride solution are provided in the beaker

<u>Procedure:</u> About 10 drops of ammonium thiocyanate solution are added to the goblet and the solution is stirred. Subsequently, the blood-red solution is mixed with the tin(II) chloride solution and stirred again.

Observation:

The strong red color disappears a few minutes after Sn²⁺ is added.

Explanation:

The iron(III) cations react with the thiocyanate anions to form deep red colored iron(III) thiocyanate complexes. If a tin(II) solution is added to the solution containing iron(III), according to the conversion formula

$$2 \text{ Fe}^{3+}|w + \text{Sn}^{2+}|w \rightarrow 2 \text{ Fe}^{2+}|w + \text{Sn}^{4+}|w$$

Fe³⁺ will be reduced to Fe²⁺, while Sn²⁺ will be oxidized to Sn⁴⁺, because according to the levels of the electron potentials [μ_e° (Sn²⁺/Sn⁴⁺) = -14 kG > μ_e° (Fe²⁺/Fe³⁺) = -74 kG], the redox pair Sn²⁺/Sn⁴⁺ is more strongly reducing than the redox pair Fe²⁺/Fe³⁺. Therefore, the deep red color of the solution caused by the ferric thiocyanate complexes gradually disappears as the reaction progresses.

Disposal:

The solution is poured in a special jar for heavy metal waste disposal.