Dissolução de mármore em ácido clorídrico

Equipamento:

Taça

Produtos químicos:

Mármore ou calcário (carbonato de cálcio) em pedaços (p.ex. placa de mármore antiga) Ácido clorídrico (1 molar)

CaCO₃ HCI

Segurança:

Ácido clorídrico (HCI) (1 molar):

H290 P390, P406

É altamente recomendável usar óculos de segurança.

Procedimento:

Pedaços de mármore (ou calcário) são colocados em ácido clorídrico, que é uma solução aquosa de cloreto de hidrogênio, HCl.

Observação:

Observa-se uma forte efervescência.

Explicação:

O carbonato de cálcio é dissolvido pelo ácido clorídrico, formando dióxido de carbono gasoso:

Nesse processo, devemos considerar que o HCl é um ácido forte e está totalmente dissociado em íons hidrogênio e cloreto, H⁺ e Cl⁻. Os íons H⁺ são responsáveis pela reação, enquanto os íons Cl⁻ permanecem mais ou menos inativos.

A força motriz química da reação é positiva, ou seja, os reagentes combinados têm um potencial químico mais alto que os produtos e, consequentemente, a reação ocorre espontaneamente.

Potenciais químicos necessários (T^{\ominus} = 298 K, p^{\ominus} = 100 kPa):

Substância	Potencial químico μ [⊖] [kG]
CaCO ₃ s	- 1128,8
H [⁺] aq	0
Ca ²⁺ aq	- 553,6
$H_2O I$	- 237,1
CO ₂ g	– 394,4

Descarte:

Após a dissolução completa dos pedaços de mármore, a solução produzida é neutralizada e descartada pelo ralo com água.