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Summary: The first subject treated here – namely mono- and multiple-layer adsorption – furnishes a vivid model

of the population of single particle quantum states with fermions and bosons. Based on this, an approach to

the elementary solution of quantum statistical problems of this kind can be derived as well. The equations

describing the translational contributions to chemical potential, entropy, energy and specific heat of a dilute gas

are important subsidiary results. Again, as in Part I, we essentially need only the chemical potential and its

dependence upon concentration and energy to treat adsorption as well as systems of fermions and bosons. The

central aspect of this paper is the problem of the transition from macroscopic to microscopic systems.

Introduction

In many branches of physics and in chemistry especially, we have become used to a constant
interplay of macroscopic and microscopic, inter- and intramolecular, viewpoints. In his work, a
chemist mentally grasps the processes on the basis of atomistic images. Then he derives rules for
his pratical actions from these images (Figure 1). The goal is to combine all the different aspects
into a unified image with whose help the transition between various levels can be achieved without
stumbling. Sometimes the goal is achieved. The formula H2O denotes both an unstructured
substance, as well as a particle having a certain shape. It describes both an assembly of molecules,
as well as a specific union of three atoms. The viewpoint depends upon the setting in which the
formula appears, or into which it has been placed mentally. In dynamics, however, the goal is rarely
achieved. For phenomena of the macroscopic world, we make use of thermodynamics. Molecular
statistics is applied for interactions between molecules, and quantum mechanics describes intra-
molecular forces. These theories are so different that the transition from one level to another is
very cumbersome. Scientists therefore are content often with qualitative rules that allow some
orientation. The derivation and application of quantitative relations is left to specialists.

Figure 1: In his work in the lab, a chemist is

guided by atomistic models. The success of his

work depends largely upon the coherence of his

molecular models. A misguided relation between

micro-world and macro-world can also lead to

failure. In the figure we see a suggestion for

an experiment for the Wurtz synthesis of knot-

ted cycloalkanes by dropwise addition of a di-

luted solution of long-chain ω-ω′-diiodalkanes in

a suspension of sodium in xylene. To achieve

the formation of knots, at least 50 CH2 units

are needed, as can be shown with the help of

calotte models. Knot free cycling and inter-

molecular polymerization are important compet-

ing reactions. The latter can be suppressed by

sufficient dilution.



On the other hand, there are transitions in the dynamics between these various levels of de-
scription that hint at more commonality than is seen in the typical formulas. As an example,
let us consider the following sequence of simple processes that can be described with the help of
equivalent reaction formulas. We start with an operation from the lab, and end with a quantum
mechanical process in an atom:

Bs + H+ → BsH+ , protonation of a base during titration,
B + E → EB , formation of an enzyme-substrate complex in a cell,

+ B → B , adsorption of a molecule at a surface site,
+ e → e , occupation of an atomic orbital with electrons.

The first two processes are commonly described phenomenologically. For the third we use
molecular kinetics, for the fourth quantum statistics. All four processes have this in common: a
certain type of particle populates a certain type of location. The transition from the first to the last
entry in the list is apparently fluid, since we can easily add intermediate entries. The gap between
the first (homogenous) reaction and the third (heterogeneous) is spanned by the second. This
reaction can be viewed as either a bimolecular reaction between solved substances E (enzyme) and
B (substrate) or as adsorption of B to E. We can get to a contiguous surface in steps by thinking
of the E-molecules as being combined into increasingly larger surface-like complexes. In a similar
way we can construct elements that mediate between the third and fourth of the processes.

From this viewpoint we cannot see what would hinder us to describe all processes on the basis
of the pattern already used in Part I. For instance, we could use chemical potentials to compute
the occupation of atomic or molecular orbitals by electrons. On further thought, however, we find
reasons that can dampen our expectations somewhat:

• The fact that these processes are dealt with so differently, speaks out against our expectation.
It appears absurd to assume that this would happen arbitrarily in such a well thought out
subject.

• We know from statistics that many-body systems have properties that are missing from
smaller assemblies of the same particles. This makes an equal treatment of an extended
aggregate and of molecular or atomic micro-systems an apparent impossibility.

• The occupancy of an atomic orbital with electrons is determined primarily by the Pauli

principle. This adds an intrinsically new, quantum-mechanical aspect which does not play a
role in the other three cases.

• In quantum statistics, the indistinguishability of equal particles has important consequences
for the distribution functions. This aspect does not have to be taken into consideration in
normal chemical processes.

To what extent these are good reasons we cannot decide on the spot. We know from the exam-
ples of Part I that differing patterns of description often are the expression of differing historical
developments, and that prejudices often prevent obvious solutions. Let us disregard the arguments
and try to extend the phenomenological description of the first process step by step to the other
three. We shall make use of the same few tools that were already applied in Part I. We essentially
assume the existence of the chemical potential and fall back on its dependence upon concentration
and energy (mass action formula µ = µ0 + RTln(c/c0) and excitation formula µ(ε) = µ(0) + ε/τ).
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Protonation of a base

This section serves to recall the type of description used in chemistry in case of our first example. In
the theory of acids and bases, the pH-value (the proton exponent) replaces the chemical potential
µH+ of the hydrogen ions1. The degree of protonation Θ = cBsH+/(cBs + cBsH+) of a base Bs
depends upon the pH-value or the proton potential µH+ of the solution. Starting with the condition
of equilibrium, µBs + µH+ = µBsH+ , the mass action formula leads to

µ0,Bs + RT ln(cBs/c0) + µH+ = µ0,BsH+ + RT ln(cBsH+/c0) .

Solving for µH+ and using the notation µ1 = µ0,BsH+ − µ0,Bs yields a relation that is equivalent
to a Henderson-Hasselbalch equation where µ1 replaces the acidity exponent pKA (see Figure
2a):

µH+ = µ1 + RT ln
cBsH+

cBs
= µ1 + RT ln

Θ
1−Θ

.

µ1 graphically describes the 50%-potential, i.e., the proton potential at a degree of protonation Θ
= 1

2 . The index 1 for the attachment of the first proton to the base Bs has been chosen in view of
a possible multiple addition of protons. Solving the previous relation for Θ, and making use of a =
exp[(µH+−µ1)/(RT )] as an abbreviation, and a = Θ/(1−Θ) and Θ = 1/(a−1 +1) as intermediate
steps, leads to the following equation:

Θ =
1

exp
(

µ1−µH+

RT

)
+ 1

(protonation equation)

We shall encounter this equation repeatedly in similar form. Figure 2b shows the relation graphi-
cally. We obtain corresponding equations and graphs if we investigate the analogous redox reaction
Ox + e− → Rd− instead of the acid-base reaction Bs + H+ → BsH+.

The chemical potential of free and occupied sites

The simplest case where we encounter the question of the chemical potential of sites, rather than of
substances, is the adsorption of a substance B from a gas or a solution to independent adsorption
sites:

+ B → B .

Since the adsorption equilibrium is codetermined by the availability of free and occupied locations,
and B , it is obvious that they might be assigned chemical potentials, µ( ) and µ( B ), as

well. A comparison with the corresponding homogenous reaction discussed in the introduction,

A + B → AB ,

1These quantities hardly differ more than Fahrenheit ϑF and Kelvin T temperatures, as demonstrated by their con-

version:

µH+ = µ0,H+ + f · pH, where f = −RT ln(10), and µ0,H+ ≡ 0 ;

T = T0,F + f ′ · ϑF, where f ′ = 5K/9F, T0,F = 255.37K .

The zero point of the chemical potential may be chosen arbitrarily for all temperatures (as long as all partners in the

reaction have the same temperature) for a single type of charged particle (electron or ion) without influencing the values

of the potential differences which alone are responsible for chemical processes. In the chemistry of aqueous solutions, the

standard reference value of the proton potential µ◦
H+ lends itself for such fixing of the scale.
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Figure 2: Titration curve of the base hydrogenphosphate, HPO2−
4 .

a) conventional: pH-value as a function of used volume V of acid (V > 0) or of lye (V < 0); solid curve: computed

according to the Henderson-Hasselbach equation, pH = pKA + lg(cBs/cBsH+ ); dashed part on the left: result

of deprotonation of HPO2−
4 forming PO3−

4 (and, partially, of H2O forming OH−); dashed part on the right: result of

protonation of HPO2−
4 forming H2PO−4 (and, partially, of H2O forming H3O+); pKi: i-th acidity exponent of phosphoric

acid.

b) (corresponds to Graph a rotated by 90◦ counterclockwise): degree of protonation Θ as a function of proton potential

µH+ ; solid line: calculated course based upon the protonation equation; dashed part: actual course. µ−i: 50%-potential

for the i-th level of deprotonation of phosphoric acid.

leads to a plausible suggestion. We can look at a particle A as the carrier of a single adsorption
location for B. So that the sites do not interact, the total concentration c = c(A) + c(AB) of
free and bound A must remain low. On the other hand, this condition allows us to make use of the
mass action formula for µ(A) and µ(AB). The condition for equilibrium µ(A) + µ(B) = µ(AB)
then takes the form

µ0(A) + RT ln[c(A)/c0] + µ(B) = µ0(AB) + RT ln[c(AB)/c0] .

We slightly change the requirement for equilibrium in order to achieve a description that is
independent of whether or not the sites sit upon separate particles or upon a continuous surface
and also independent of the components of the carrier A unimportant for adsorption. c(A)/c

= Θ( ) is the fraction of empty sites and c(AB)/c = Θ( B ) the fraction of occupied sites. We
replace c(A) and c(AB) with c Θ( ) and c Θ( B ), respectively, and subtract µ0(A) + RT ln(c/c0)
from both sides:

µ0( ) + RT lnΘ( )
︸ ︷︷ ︸

+ µ(B) = µ0( B ) + RT lnΘ( B )
︸ ︷︷ ︸

µ( ) + µ(B) = µ( B ) (equilibrium condition)

We understand µ0( B ) ≡ µ0(AB) − µ0(A) to be the reference value of the chemical potential of
the occupied sites, meaning as the potential µ( B ) at full occupation Θ( B ) = 1. The term µ0( )
≡ 0 is only inserted for the sake of unity. It takes the role of the reference value of the chemical
potential of empty sites , meaning as the potential µ( ) for Θ( ) = 1.

A chemical bond between A and B changes both A and B. In larger molecules, the changes
affect mostly the atoms near the bonding site while atoms further away are mostly unaffected. Our
definition above of the quantity µ0( B ), results in all the changes of the molecules A and B being
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formally assigned to the adsorbed particle B. In contrast, the contribution of the unchanged parts
of the carrier A cancels, especially that of all the atoms of A that do not lie in the bonding site’s
area of influence.

The mass action formulas derived above, µ( ) = µ0( ) + RT lnΘ( ) and µ( B ) = µ0( B )
+ RT lnΘ( B ), (for sites independent of each other whether or not they are occupied) can be
applied widely. We will deal with this in more detail in the following.

Single-layer adsorption

In our first example, we consider the case discussed in the last section. More precisely, we will look
at the adsorption of a substance B out of a dilute solution or dilute gas on a solid surface with
identical and independent adsorption sites. Taking into account the mass action formula for B,
and B , as well as the equations Θ( B ) = Θ and Θ( ) = 1 − Θ with the degree of coverage Θ,
the condition for equilibrium of adsorption is:

µ0( ) + RT ln(1−Θ) + µ0(B) + RT ln(c/c0) = µ0( B ) + RT lnΘ .

We subtract µ0(B) from both sides, divide by RT , raise to the power of e and multiply by c0.
Because of µ0( ) = 0, this leads to the relation

c(1−Θ) = c0 · exp

(
µ0( B )− µ0(B)

RT

)

︸ ︷︷ ︸
c1 50%-concentration

·Θ .

Dividing both sides by c Θ and addition of 1 yields 1/Θ = 1 + c1/c. Going over to the reciprocal
and expanding the right hand side by c/c1 results in the well-known equation for Langmuir’s
adsorption isotherm, in which the parameter c1 represents the 50%-concentration, meaning the
concentration c for which Θ = 1

2 :

Θ =
c/c1

1 + c/c1
=

1
1 + c1/c

(Langmuir’s adsorption equation)

Multi-layer adsorption

If one works at temperatures and pressures near the dew point of a gas B|g that is to be adsorbed,
then further gas particles are deposited on the first layer of B molecules on the surface so that the
degree of coverage Θ can be greater than 1:

+ i B|g → i B i = 1, 2, 3...

While the undermost layer of the adsorbed B-film is generally bound more strongly to the adsorbing
surface, the other layers adhere to each other as if in a fluid. We take this fact into account by
assuming that

µ( i B ) = µ( B ) + (i− 1) · µ(B|l) .

The chemical potential of B in a fluid state is represented by µ(B|l). If we abbreviate the fraction of
sites occupied by i particles by Θi, and take into account µ( ) = 0, the condition of equilibrium
µ( ) + iµ(B|g) = µ( i B ) for the adsorption process is

RT lnΘ0 + i · [µ0(B|g) + RT ln(c/c0)] = µ0( B ) + (i− 1) · µ(B|l) + RT ln Θi .
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Figure 3: Brunauer-Emmet-Teller ad-

sorption isotherms. The degree of coverage

Θ is represented as a function of the reduced

pressure p/ps for various values of the ratio of

50%-pressure p1 and saturation pressure ps.

The smaller the 50%-pressure the firmer the

binding to the surface. p1 < ps corresponds to

an adsorbing surface, p1 = ps to an indifferent

surface and p1 > ps to a repelling surface.

We subtract iµ0(B|g) from both sides, divide both sides by RT , raise to the power of e and multiply
by ci

0. This yields

Θ0 ci = c0 · exp

(
µ0( B )− µ0(B|g)

RT

)

︸ ︷︷ ︸
c1 50%-concentration

·
[

c0 · exp
(

µ(B|l)− µ0(B|g)
RT

)

︸ ︷︷ ︸
cs saturation concentration

]i−1

·Θi .

c1 is the half-value concentration of single-layer adsorption, as a comparison to the corresponding
formula in the last section shows. The saturation concentration is cs where liquid B|l and vapor
B|g are in equilibrium,

µ(B|l) = µ(B|g) or µ(B|l) = µ0(B|g) + RT ln(cs/c0) .

Solving for cs yields the expression used above. If one divides the equation for Θ0c
i by ci

s and uses
the abbreviations c/cs = q and c1/cS = a, one obtains

Θ0 qi = a Θi for i > 0 .

Multiplying the equation on the one hand by the factor 1, and on the other by a factor i and
adding up over all i > 0, yields for q < 1 the two relations

Θ0q (1 + q + q2 + q3 + ...)︸ ︷︷ ︸
(1− q)−1

= a (Θ1 + Θ2 + Θ3 + ...)︸ ︷︷ ︸
1−Θ0

,

Θ0q (1 + 2q + 3q2 + ...)︸ ︷︷ ︸
(1− q)−2

= a (Θ1 + 2Θ2 + 3Θ3 + ...)︸ ︷︷ ︸
Θ

.

The expression in parentheses below at the left is exactly the derivative with respect to q of
the expression in parentheses above at the left. Therefore its sum is identical to the derivative
d(1 − q)−1/dq = (1 − q)−2. Dividing both sides of the first equation by aΘ0, addition of 1 and
going over to the reciprocal yields an expression for Θ0 (below left). This can be inserted into the
second equation to be solved for Θ. The result is (below right):

[
1 +

q

a(1− q)

]−1

= Θ0 , Θ =
q

[a(1− q) + q](1− q)
.

If one divides the numerator and the denominator by a, and inserts q = c/cs and a = c1/cs,
one obtains the equation for the Brunauer-Emmet-Teller adsorption isotherm in which the
concentration ratios c/c1 and c/cs can be replaced by the corresponding pressure ratios p/p1 and
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p/ps (Figure 3),

Θ =
c/c1

(1 + c/c1 − c/cs) · (1− c/cs)
. (BET adsorption equation)

Generalizing the adsorption equations

One can give the adsorption equations a more general formulation in which the substance to be
adsorbed, B, can appear in any form (not only as a dilute gas or dilute solution) if one does not
revert to the mass action formula for B when deriving the result. We can easily go back on this
step and replace the concentrations with potentials again by use of an approach of the type µ =
µ1 + RT ln(c/c1) or c1/c = exp[(µ1−µ)/RT ]. This is interesting for the Langmuir equation Θ =
(c1/c+1)−1 and, correspondingly, the BET equation for c1 = cs, Θ = (c1/c−1)−1, which describes
the ”condensation” of the gas B on an ”indifferent” surface (neither adsorbing nor repelling and
comparable to fluid B in binding behavior). We obtain two important functions, represented in
Figure 4. We have already encountered one of these in protonation of a base, and we will encounter
them again later:

Θ =
1

exp
(

µ1−µ
RT

)
+ 1

Langmuir adsorption

(Fermi-Dirac distribution),

Θ =
1

exp
(

µ1−µ
RT

)− 1

Condensation on indifferent surface

(Bose-Einstein distribution).

condensation at an
indifferent surface

L
adsorption

ANGMUIR

2 RT

Q

m
m1

Figure 4: Degree of coverage Θ as a function

of the chemical potential µ of the substances

to be adsorbed, for two theoretically interesting

special cases. R gas constant, T temperature,

µ1 ”50%-potential” (for which half-occupation

of the first adsorption layer is reached).

Contribution of translation to the chemical potential

We wish to calculate the contribution to the chemical potential µ of the different quantum me-
chanically allowed translation states of the molecules of a dilute gas B. This gas is in a container
with a volume V . At first we will assume that all the molecules have the same internal state –
rotational state, vibrational state, electronic state, nuclear state – having energy ε, so that they
are all identical. If, for the sake of simplicity, we assume the container to be a cube with edge
length a, the additional energy of the individual translation states of the B molecules with mass
m, is given by the following equation:

εnnn =
nnn2h2

8ma2
nnn = (n1, n2, n3) and n1, n2, n3 = 1, 2, 3...
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We consider each translation state nnn as a kind of site
nnn

inside the container. This location
can be occupied by B particles. In the case of fermions, this would be one particle at the most. In
the case of bosons, the number is unlimited,

nnn
+ iB → i B

nnn

{
i = 0, 1 for fermions,
i = 0, 1, 2, 3... for bosons.

First, in a dilute gas there is no interaction between the particles worthy of mention. Second, the
number of locations available is much greater than the particle number N . The first condition
means that the locations will be occupied independently of each other, whereas the second means
that the degree of occupation2 for all the locations remains small, i.e., Θnnn ¿ 1, so that multiple
occupancy or processes with i > 1 can be ignored. Under these circumstances, fermions and bosons
behave identically. We revert to

µ(
nnn
) = µ0( nnn

)
︸ ︷︷ ︸

0

+ RT ln(1−Θnnn)︸ ︷︷ ︸
≈ 0

, µ( B
nnn
) = µ0( B

nnn
)

︸ ︷︷ ︸
(εnnn + ε)/τ

+ RT ln Θnnn .

for the chemical potential of an empty and simply occupied site. Because of Θnnn ¿ 1 in the
expression on the left, we can set the logarithmic term practically equal to zero so that µ(

nnn
)

disappears. On the right, we can express the main term by (εnnn + ε)/τ . The substance B is
exchanged inside the container between the different locations and between the container and the
environment, if the container walls are permeable, until all the processes

nnn
+ B → B

nnn
are in

equilibrium. This means until µ(
nnn
) + µ = µ( B

nnn
) or, based upon the expressions above, until

µ = (εnnn + ε)/τ + RT lnΘnnn for all nnn

To calculate N , we solve for Θnnn and add up over all nnn:

Θnnn = exp
(

µ− ε/τ

RT

)
· e−εnnn/kT , N =

∑
nnn

Θnnn = exp
(

µ− ε/τ

RT

)
·
∑
nnn

e−εnnn/kT ,

The sum at the right is in agreement with the translational partition function zt of quantum
statistics, which we can calculate in the usual way. One cannot call this part of the calculation
as elementary, but it is also not too difficult for us to carry it out. Using the abbreviation q =
h/(2a

√
2mkT ), one obtains:

∑
nnn

e−εnnn/kT =
∞∑

n1,n2,n3=1

e−q2(n2
1+n2

2+n2
3) =

[ ∞∑
n1=1

e−q2n2
1

]3

≈
[ ∫ ∞

0

e−q2n2
1dn1

︸ ︷︷ ︸√
π/2q

]3

=
(2πmkT )3/2

h3
V .

The step from the sum to the integral can be carried out if q ¿ 1, so that the function value
f(n1) = e−q2n2

1 changes only slightly with growing integer n1. This condition is satisfied for usual
temperatures and macroscopic dimensions of a. If the ”quantum length”3 λ = h/

√
2πmkT or the

2Instead of the term degree of coverage, which is based upon surfaces we use the more general term degree of

occupation here. We reserve the name occupation number for the particle number in specific quantum states. The

occupation number is therefore an integer, the degree of occupation ( = average occupation number) is a real number.

3
√

2πmkT describes the momentum uncertainty based upon the thermal motion of the particles, and the quantum

length λ = h/
√

2πmkT describes the corresponding position uncertainty. The position of the center of mass of a thermally

moving gas particle is only determined up to a speck of the length, height and width λ. At room temperature, λ is 100

pm for hydrogen atoms (gas kinetic diameter 250 pm) and 4300 pm for electrons.
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”degeneracy concentration”4 ce = τ/λ3 are introduced as abbreviations, the result simplifies to∑
e−εn/kT = V/λ3 = V ce/τ . Insertion into the equation for N , solving for µ, and taking into

account Nτ/V = c, results in the desired contribution of translation:

µ =
ε

τ
+ RT ln

c

ce
with ce =

τ

λ3
, λ =

h√
2πmkT

.

In order to put the equation into the usual form µ = µ0 + RT ln(c/c0), one needs only to insert
ce = (c/c0)/(ce/c0) and to transform the equation accordingly. Because in gases one prefers the
variable to be the pressure p instead of the concentration c, we will continue our considerations in
this direction.

Properties of dilute gases

In order to convince ourselves that the substance B distributed upon the sites
nnn

in the container
really behaves like a gas, we apply the relation (∂µ/∂V )T,n = −(∂p/∂n)V,T known from thermo-
dynamics to the equation for µ which we obtained in the last section. In doing so we observe that
c = n/V and that ce is independent of V :

(
∂p

∂n

)

V,T

= −
(

∂µ

∂V

)

T,n

= 0 +
R T

V
.

Integration over n at fixed V and T yields, as expected, the gas law p = nRT/V = cRT . Therefore,
we can replace c in the equation µ = ε

τ + R T ln c
ce

by p, c/ce = p/pe with pe = ce R T = k T/λ3

as ”degeneracy pressure” µ = ε
τ − R T ln pe

p0
+ R T ln p

p0
. By inserting pe and λ, we obtain

µ =
ε

τ︸︷︷︸
µinn

− R T ln
(

(2 π m)3/2(k T )5/2

h3 p0

)

︸ ︷︷ ︸
µt,0(T )

+R T ln
p

p0
.

µt,0(T ) is the reference value of the contribution of translation, meaning the value at the reference
pressure p0. The contribution of the internal state of the molecule is represented by µinn. Here
it is composed only of the term ε/τ because we have only assumed a single state. In the case of
multiple internal states with energies εi,

µinn = R T ln
∑

i

e−εi/k T ,

appears instead as one can immediately derive if one again combines all the particles in the same
state into a substance B(i) and considers all of these substances as an equilibrium mixture. The
expressions derived earlier for the contributions of vibration and rotation, µs(T ) and µr(T ), are
special cases of this equation.

As an acknowledgement of conventions, we finally calculate entropy and heat capacity for a
monatomic gas B without internal degrees of freedom, for which we have µinn = ε/τ . Taking the

4A gas must have a concentration of c ¿ ce = τ/λ3 in order to behave normally. It degenerates when c is of the

order of or larger than ce, i.e., if one or more particles are found in a volume of the order of λ3. For electrons at room

temperature, ce = 21 mol m−3. The concentration of conduction electrons in a metal is far above this value (≈ 105 mol

m−3).

9



first derivative with respect to T at constant p yields the molar entropy Sm = −(∂µ/∂T )p,n, up
to the factor −1. Taking the second derivative, we obtain, up to the factor −T , the molar heat
capacity at constant pressure Cp,m = −T (∂2µ/∂T 2)p,n:

Sm = R

[
ln

(
(2 π m)3/2(k T )5/2

h3 p

)
+

5
2

]
(Sackur-Tetrode equation)

Cp,m =
5
2

R .

The contribution of translation to the molar heat capacity CV,m which is smaller by R, is thus
3
2 R and as a consequence the energy for a translational degree of freedom of a particle 1

2 k T , as
required by the equipartition principle.

Fermi-Dirac, Bose-Einstein and Boltzmanns distributions

We focus once again upon occupation of a single site with a particle B, although we now
omit the requirement Θ ¿ 1 for the degree of occupancy. We consider a site more generally as
a collection of quantum states which vary in occupation number, but not in their other quantum
numbers. An orbital in the electron shell of an atom or of an atomic union is an example of such a
site that can be occupied by electrons as long as one considers states with different spin quantum
numbers as belonging to different orbitals. The processes of occupation to be considered are:

+ iB → i B

{
i = 0, 1 for fermions,
i = 0, 1, 2, 3... for bosons.

For the chemical potential of an i-fold occupied position, we use the approach

µ( i B ) = µ0( i B ) + R T ln Θi with µ0( i B ) = i · ε/τ .

The fact that we have set µ0( i B ) proportional to the occupation number i, means that, as
before, we ignore interactions between particles. Here, ε comprises the energy of a possible internal
excitation of the particle as well as the energy gained by occupation of the site. Because of µ0( )
= 0, the condition for equilibrium µ( ) + i · µ = µ( i B ) takes the following form

R T lnΘ0 + i · µ = i · ε/τ + R T lnΘi or solved for Θi ,

Θ0

[
exp

(
µ τ − ε

k T

)

︸ ︷︷ ︸
q

]i

= Θi for all i.

Here, q serves as an abbreviation. Multiplication of the equation by 1, on the one hand, and by i

on the other, and summing over all i, yields the two relations on the left for fermions. In the case
of bosons for q < 1, it yields the two relations on the right.

Θ0(1 + q) = Θ0 + Θ1︸ ︷︷ ︸
1

, Θ0 (1 + q + q2 + q3...)︸ ︷︷ ︸
(1− q)−1

= Θ0 + Θ1 + Θ2...︸ ︷︷ ︸
1

Θ0q = Θ1 = Θ Θ0 q (1 + 2 q + 3 q2...)︸ ︷︷ ︸
(1− q)−2

= Θ1 + 2 Θ2 + 3 Θ3...︸ ︷︷ ︸
Θ

The expression 1 + 2 q + 3 q2... is the derivative of 1 + q + q2 + q3.... Hence, its sum is equal to the
derivative d(1− q)−1/dq = (1− q)−2. If we calculate Θ0 from the equations of the first line, and
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Figure 5: Fermi-Dirac and Bose-Einstein distribution

a) Degree of occupation Θ of a site with fermions or bosons as a function of the chemical potential µ; T temperature,

ε particle energy on the occupied site; dotted: Extrapolation of the common initial part, which conforms with a Boltzmann

distribution. Compare here to Figure 4!

b) Distribution of fermions on sites (thin bars) of different energy ε. Degree of occupation Θ (thick bars) as a function of

ε. Except for a transition zone in the order of k T , all the sites below the Fermi edge µ τ are fully occupied. In contrast,

the ones above are empty.

insert it into the equations in the second line, we obtain the degree of occupancy

Θ = (q−1 + 1)−1 for fermions, Θ = (q−1 − 1)−1 for bosons.

By writing out q we get the distribution functions (left, and middle):

Θ =
1

exp
(

ε−µ τ
k T

)
+ 1

Fermi-Dirac

Θ =
1

exp
(

ε−µ τ
k T

)− 1

Bose-Einstein

Θ = exp
(

ε− µ τ

k T

)

Boltzmann

The two functions are illustrated in Figure 5. If the chemical potential decreases below ε/τ ,
and with it the degrees of occupancy Θ become small, the functions have the same form. The 1
in the denominator can then be ignored and one obtains the distribution function valid for small
Θ, given above on the right. Numerous sites with the same energy ε are often combined into one
energy level. In this case, the average particle number N̄ can be calculated for this purpose by use
of the Boltzmann-distribution function, even for N̄ > 1, as long as the degrees of occupancy Θ
remain small for a single site.

Review

We have seen that the task we set ourselves, namely to expand the phenomenological description of
macrosystems over to microsystems, could be accomplished without much difficulty. The objections
that seemed so convincing at the beginning became invalid. In retrospect we are tempted to dismiss
them as unfounded prejudices. However, they should not be considered wrong, as they were correct
according to the level of knowledge at that time. Now – in light of new knowledge – we must review
them and adjust our thinking accordingly.

The first argument that differences in the patterns of description in a well thought out field
lets us expect that such deviations don’t happen arbitrarily, is in itself beyond doubt. Only the
assumption that despite their long histories, thermodynamics and chemical dynamics are ”well
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thought out” doesn’t seem to apply. On the contrary, our findings lead us to expect that not all
the faults in the conceptual structure have been found, by far.

The second argument pertained to the circumstance that macrosystems can have characteristics
which corresponding microsystems do not have, which therefore makes equal treatment impossible.
One can associate with an isolated multi-particle gas a temperature T or a chemical potential µ,
but not with a closed system of one, two or three gas particles. There is no such limitation in micro-
systems that are in thermal or chemical equilibrium with their macroscopic environment because
T and µ are determined from outside. It is enough here to forgo isolation from the environment,
which is uninteresting anyway, in order to achieve the desired equal treatment.

The third argument was that the Pauli exclusion principle introduces a totally new aspect
to the considerations. This is a specious argument. In fact, a proton bound to a base excludes
binding of a second proton in the same place in the same way that an electron in an orbital holds
off a second electron. We make the Pauli principle responsible for the first case and spatial size
of atoms for the second one. However, the required space for electrons in the atomic electron shell
and the sizes of the atoms and molecules involved are governed by the exclusion principle. This
aspect is not new and has been long included without being expressly mentioned.

Similar reasons can be applied to the fourth argument, which states that the indistinguisha-
bility of identical particles only comes to bear in quantum statistics and not in common chemical
processes. Already in the cases of the simplest chemical equilibria, contradictions can be construed
if we disregard indistinguishability. For example, if we consider a dissolved substance B with
concentration c and chemical potential µ = µ0 + R T ln(c/c0), to be divided into two identical
components made up of B particles with the concentrations c/2, then we must assign the chemical
potential µ0 + R T ln((c/2)/c0) < µ to the components. If B were in equilibrium with a substance
A, then this would not hold for the components in question so that A would have to decay into
these and therewith into B. Thinking of a substance as decomposed into components is a mental
tool we have often used. It assumes that the components are different from each other in some
characteristic. Only artificial violation of this assumption lead to conflicts. Therefore, the indis-
tinguishability of identical particles appears as a special difficulty for us but is rather the specific
problem of an approach in which configurations of individual particles are made the starting point
of statistical considerations.

Outlook

Up to this point, our means have never failed us in our derivations. On the contrary, we have
achieved certain key equations that make a large part of the areas of application of molecular
statistics accessible. Since statistical justifications are referred to in many fields of physics and
chemistry, a wide field of application opens up here.

However, in order to use the mass action formula, we have always excluded interaction forces
between particles of a dissolved, adsorbed or gaseous substance. We have always presupposed
”ideal” circumstances. What is to be done when this condition is no longer fulfilled? At first
thought, it is hard to imagine how this limitation can be overcome. Again we have the impression
of having come to a barrier which is too high for our simple means. On the other hand, we have
just observed how misleading such hasty judgements can be and one should not be kept from
making an attempt. Indeed, it appears that with some skill, this hurdle can also be overcome. In
another paper we wish to investigate the possibilities of including intermolecular interactions, such
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as Coulomb’s forces between dissolved ions, the required space of gas molecules or the mutual
influence of adsorbed particles.
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