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Summary: In order to derive the relation between macroscopic thermodynamic quantities and the quantum

mechanical properties of atoms or atomic unions, statistical thermodynamics is usually applied. It is considered a

necessary means of solving problems of this type because ”phenomenological thermodynamics as a macroscopic

theory is on principle not able to make statements about atomic systems”. To correct this entrenched prejudice

that is even made relevant by standardized exams, is the aim of this presentation. Various important results of

quantum statistics will be derived for which, apart from the well-known relations of quantum mechanics, only the

chemical potential and its concentration and energy dependence are needed.

Introduction

The subject dealt with here is a small part of a more extensive project. The purpose of this project
is to make a thorough examination of all those areas of chemistry that can be categorized under
chemical dynamics (or more general matter dynamics) with the aim of finding and elaborating the
framework of concepts common to all parts of it. Figure 2 gives an overview of the field. If one
looks at the individual key words, one sees that almost all the branches of physical chemistry are
to be found.

Chemical dynamics has been developed from many sides simultaneously. It therefore has no
strictly unified framework like a mono-crystal, but it rather resembles a poly-crystal where differ-
ently ordered areas grow together in a more or less coincidental way at historically defined borders
(Figure 1). It is no wonder that there are strongly varying ways of describing similar phenom-
ena appearing in different areas. Compare, for instance, the terminology and equations used for
describing processes such as the exchange of chemical substances on adsorbing surfaces, exchange
of protons in acid-base reactions, exchange of electrons between redox systems and exchange of
photons in spectroscopy. Common characteristics are hardly to be found here and trying to find
them feels contrived.

Figure 1: Structures that grow together

from different sides are seldom completely

ordered. Drawing from a photograph of un-

known provenance.
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Figure 2: The areas of chemistry that can be categorized under ’chemical dynamics’. The chemical potential µ comprises

the central pivot in all of chemical dynamics, where the lever is best applied for solving the problems involved1. This also

holds for the molecular statistics investigated here, in which partition functions would otherwise play the key role.

It is obvious that an unnecessary and uncoordinated juxtaposition of various terms is not
economical. The transition from one area to another is complicated because one must rethink an
old order into a new one.

One tends to accept this condition as natural and therefore, unavoidable. The fact is, though,
that the terminology and formulas we use for our descriptions are constructions containing many
random elements making it easy to give the appearance of differences when they don’t actually
appear in nature (Figure 3). A good example of this is ”molecular statistics” whose application,
if compared to phenomenological thermodynamics, requires a new and specific repertoire of termi-
nology. The problems dealt with can just as easily be solved with previously known methods, as
will be demonstrated in the following.

First acquaintance with molecular statistics

A physicist or chemist first encounters molecular statistics in a classic variation, in the kinetic
theory of gases. Maxwell’s law of velocity distribution, Boltzmann’s law, and the equipartition
principle of energy are some results of the classical mechanical theory. These are considered to be
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Figure 3: How easily contradicting pictures can be created despite identical basic structures can be seen in the figure.

On the left is the predetermined dot pattern. The assignment was to mark the positions of the intersections and breaks

of the dots in the most simple and memorable way by use of lines. A selection of the results by various people is pictured

on the right. The order of the dots is exactly the same both on the right and on the left. The meandering pattern was

basic to the drawing of the points. However, even this pattern is not clearly defined so that differing areas of meandering

can be created which have a disordered structure at the edges.

both important enough and simple enough to be presented to students during their first semesters.
A statistical derivation is avoided due to its complexity. The barometric formula is often used to
give at least some justification for the existence of the Boltzmann-Factor e−ε/kT .

As the most frequent application of the equipartition principle, the internal energy of an ideal
gas and its heat capacity – which is derived on the basis of the temperature dependence of the
internal energy – are discussed. While the contribution of the translational movement of the
gas molecules is totally regular, and the contribution of rotation can be comprehended through
comparably simple rules, it is difficult to describe vibrations. When they are totally ”frozen”
at low enough temperatures and therefore make no contribution, the conditions are still simple
even when incomprehensible from the standpoint of classical theory. The area of somewhat higher
temperatures, where vibrations gradually ”thaw”, is the actual domain of quantum statistics, in
which quantum theoretical results can be combined with statistical methods. Only when the
vibrations are fully stimulated can the equipartition principle be used for calculating the kinetic and
potential vibrational energy. It will fail again when even higher temperatures make the vibration
anharmonic.

Prerequisite Formulas

It is especially easy here to fall back on phenomenological thermodynamics as an alternative to
statistics. In fact – as usual for solving almost all problems of chemical dynamics1 – we need only
the existence and some properties of the chemical potential from the extensive thermodynamic

1G. Job: ”Teaching Thermodynamics: Chemical Potential From the Beginning”, lecture at the conference for thermo-

dynamics in Taormina (Sicily) on 20.2.91. Taking into account the numerous special constructs in thermodynamics only

increases the length of calculations. Among these constructs are – in addition to the usual energy term E – quantities

such as internal energy U , enthalpy H, free energy F , free enthalpy G, or, along with the chemical potentials µ, the

activities λ, fugacities f , ionic exponents pH, pOH ... and all the other quantities derived from them. In order to preserve

the relationship to previous representations, it will be necessary to deal with these concepts and not to ignore them.
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calculus. We will use the formula for its concentration dependence especially often. Because in the
following we will limit ourselves to dilute gases and solutions, the following equation is sufficient:

µ = µ0 + RT ln
c

c0
. (mass action formula)

This formula describes the phenomenon chemists call mass action as a characteristic of the chemical
potential of a substance. For this reason we shall call it the mass action formula. Due to the
proportionality of pressure and concentration in dilute gases of the same temperature, p ∼ c, we
can replace the ratio c/c0 by the pressure ratio p/p0 when necessary. Similarly, this holds for other
concentration measures – molality b, mass fraction w, mole fraction x, etc. – so that we have
slightly differing ways of playing with the mass action formula. The value µ0 at the reference value
of the chosen concentration measures, i.e., c0, p0, b0 etc., we call the reference value of the potential
(in an extended sense2) or briefly the reference potential.

Another equation is often used. When the molecules of a substance are put into an excited
state which is higher in energy by ε, without otherwise altering them or their surround (type of
solvent, temperature, pressure, concentrations, field strengths etc.), the chemical potential of the
substance increases by the molar energy ε/τ :

µ(ε) = µ(0) + ε/τ . (excitation formula)

(τ indicates the elementary amount of substance3,4). The simplest form of such a ’purely energetic’
excitation that leaves the molecules themselves unchanged would be to displace them in an external
field to a position having a higher potential energy, by a value of ε. By choosing an appropriate
point of departure, one can, for example, set ε = mgh in the gravitational field and ε = zeϕ in the
electric field. µ(ε) = µ(0) + Mgh is also designated as the gravi-chemical potential and µ(ε) =
µ(0) + zFϕ as the electro-chemical potential, while µ(0) represents the intrinsic chemical potential
(m mass of a molecule, M = m/τ molar mass, g gravitational field strenght, h height, z charge
number, e elementary charge, F = e/τ Faraday-constant, ϕ electric potential).

The internal excitation of molecules requires a bit more attention. In general, the initial state
of the molecules is not equivalent to any one ”quantum state” with a certain energy ε0, but rather
comprises a collective of such states with the energies, ε0, ε1, ε2 ... . Only when an excitation
leads to an equal shift of all energy values to ε, ε0 + ε, ε1 + ε, ε2 + ε ... , without changing the
number of states, can µ be calculated as given. In the usual approaches, this condition is adhered
to unconsciously, needing little thought.

2In practice it is advisable to limit our use of the expression reference value (in the narrow sense) to the most common

case, namely that the reference values c0, p0, b0 ... of the chosen concentration measures c, p, b ... correspond to the

norm values c◦ = 1 kmol m−3, p◦ = 101 kPa, b◦ = 1 mol kg−1 ... . These reference values – often called standard

values – are indicated by a special symbol such as µ◦.
3In his ”Konzepte eines zeitgemäßen Physikunterrichts”, Book 2, Schroedel: Hannover 1978, pg. 9, G. Falk suggests

that τ is the reciprocal of the Avogadro constant τ = N−1
A = 1.6606 ·10−23 mol. It marks the elementary amount of a

substance, meaning exactly the amount that is usually called a particle. This not absolutely necessary and initially strange

departure from the usual way of writing gives us more uniform formulas and ways of expression. Particle number N and

charge number z or elementary amount of substance τ and elementary charge e become corresponding quantities. The

amount of substance n as well as the electric charge q are quantized by integers, where τ and e represent the elementary

quanta of these quantities: n = N · τ , q = z · e.
4In physics the product µτ is often called chemical potential and abbreviated with the symbol µ. It then happens that

the particle number Ni appears in the formulas instead of the amount of substance ni.
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It should be remembered that the first derivative of chemical potential with respect to temper-
ature T at constant values of pressure p and amount of substance n, yields the molar entropy Sm,
whereas the second derivative yields the molar heat capacity Cp,m:

Sm = −
(

∂µ

∂T

)

p,n

and Cp,m = −T

(
∂2µ

∂T 2

)

p,n

.

If we proceed from chemical potentials to entropies or heat capacities, we already start upon the
wrong path, making the descriptions more complicated (except in the case of the effects of heat),
the formulas more complex, the proofs more obscure. For these reasons, it is advisable to avoid
taking this step if possible. We will take it here on occasion, but only to make better comparisons
with previous results.

We will, at first, accept the conclusions of quantum theory without question, even though we
would only need strongly simplified relations for a number of applications in this field. Some of
the derivations below could be further streamlined using this approach.

Contribution of vibrations to the chemical potential

As the simplest example, we consider a bi-atomic gas B, perhaps iodine vapor. We take all the
gas particles that are in the same vibrational state with the vibrational quantum number v to
be molecules of a substance B(v), and the entire gas to be a mixture of these substances5. The
differences of energy in the individual vibrational states are taken into account by assuming ε(v)
= v · hν, where we consider the vibrations as approximately harmonic and independent of other
kinds of movement of the molecule6. As long as this approximation is valid, the excitation formula
yields for the chemical potential of the individual substance B(v)

µ0(v) = µ0(0) + v · hν

τ
for v = 0, 1, 2, 3... .

Since the transformation of potentials into one another must happen under the same conditions,
and especially at identical concentrations, the formula contains the reference values. Changes in
vibration in the particles through collisions with each other and with the wall, appear as transfor-
mations of the following type:

B(v) −→ B(v′) .

After a short while, all of these processes reach a state of equilibrium where the concentrations of
the components B(v) reach their equilibrium values c(v). In this state, the potential µ is the same
for all substances B(v). This means that when we take both the mass action and the excitation
formula into account, we obtain

µ = µ0(0) + v · hν

τ
+ RT ln

c(v)
c0

and v = 0, 1, 2, 3... .

5This device was first used by Albert Einstein (Verh. Dtsch. Phys. Ges. 12 (1914) 820) with the expressed note

that so used, recourse to Boltzmann’s principle, and therewith, statistical considerations, become unnecessary.

6We therefore assume that the transition from a vibrational state into another, has no influence upon other quantum

states of the molecule (translation, rotation, etc.). This is certainly not justified at higher states of rotation because the

increase of moment of inertia through an enlarged vibration amplitude and therewith, reaction upon rotational movement,

becomes noticeable. This error is unimportant at lower temperatures because the portion of more strongly stimulated

particles is very small in the equilibrium mixture.
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Figure 4: The contribution of molecular vibration

to the heat capacity of I2-vapor, is Cs(T ) . The

characteristic temperature of vibration Θs is 305 K.

The c(v)’s are easily calculated from this. By subtracting µ0 + v · hν/τ from both sides, dividing
by RT , taking into account the power rules ea+b = ea · eb and eln a = a, multiplying by c0, and
remembering that R = k/τ , we obtain

c0 · exp
(

µ− µ0(0)
RT

)

︸ ︷︷ ︸
c(0)

·
(
e−hν/kT

)v

︸ ︷︷ ︸
q < 1

= c(v) .

That the expression on the left is equal to c(0) can be seen when one sets v = 0. Adding up all
the concentrations c(v) gives the total concentration c of the gas B:

c =
∞∑

v=0

c(v) = c(0)
∞∑

v=0

qv = c(0)
1

1− q
= c0 exp

(
µ− µ0(0)

RT

)
1

1− e−hν/kT︸ ︷︷ ︸
zs

.

The fraction on the far right is the well-known quantum statistical expression for the vibrational
partition function zs of the harmonic oscillator. Solving for µ results in

µ = µ0(0) + RT ln
(
1− e−hν/kT

)
+

︸ ︷︷ ︸
µs(T )

RT ln
c

c0

The term µs(T ) is the sought after contribution of molecular vibrations to the chemical potential.
By taking the second derivative with respect to T and multiplying by −T , we can calculate the
contribution of vibrations to the molar heat capacity, Cs = −T (d2µs/dT 2). The result, which is
represented in Figure 4, is:

Cs = R · (hν/kT )2 · ehν/kT

[ehν/kT − 1]2

(intermediate steps have been omitted here).

Contribution of rotation to the chemical potential

Calculations for rotational contributions follow the same pattern. This exercise is actually only
interesting in the case of hydrogen, where the rotations, like the vibrations, begin to ”freeze” at a
comparably high temperature. In the following we will limit ourselves to para-hydrogen. Quantum
mechanically we obtain for the energy of the hydrogen molecule ε(J,mJ) = k Θr · J(J + 1), which
holds for the rotational state characterized by the rotational quantum number J and the magnetic
quantum number mJ . Θr is the rotational temperature which can be calculated from the molecular
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geometry. Again, we take the total of all the molecules in the same state of rotation as one
substance B(J,mJ). According to the excitation formula, the reference value of the potential is:

µ0(J,mJ) = µ0(0, 0) + R Θr J (J + 1) ,





J = 0, 2, 4, 6, 8... ,

mJ = −J,−J + 1, ..., J − 1, J .

Of course, we could have combined all the molecules belonging to one rotational level into a
substance B(J), i.e., the molecules which have rotational states with the same J , but not necessarily
the same mJ , and therefore differ from each other not by their energy, but by their orientation
in space. However, since the number of quantum states differing by mJ is 2J + 1 and therefore
changes from one rotational level to another, the requirements for applying the excitation formula
were not fulfilled.

In colliding with each other, differing kinds of molecules change into one another so that the
concentrations c(J,mJ) alter until – at the same value of the chemical potential – equilibrium
is reached for all components B(J,mJ) of the mixture. Because of the mass action formula, the
following equation holds in this case for all J and mJ :

µ = µ0(0, 0) + R Θr J (J + 1) + RT ln
c(J,mJ)

c0

from which, as seen in the last section, one can calculate the concentrations of all substances

c0 · exp
(

µ− µ0(0, 0)
RT

)
·
(
e−ΘrJ(J+1)/T

)
= c(J,mJ) .

Adding up over all J and mJ – the latter results in 2J + 1 equal elements and therewith, a factor
2J + 1 – yields for the total concentration c of gas B

c = c0 · exp
(

µ− µ0(0, 0)
RT

) ∑

J

(2J + 1) e−ΘrJ(J+1)/T

︸ ︷︷ ︸
zr

zr is equivalent to the rotational partition function of quantum statistics. If the equation is solved
for µ and the sum is written out, one obtains for µ the expression

µ = µ0(0, 0) − RT ln(1 + 5e−6Θr/T + 9e−20Θr/T + ...) +︸ ︷︷ ︸
µr(T )

RT ln
c

c0

where µr(T ) represents the desired rotational contribution in the form of a series. Because the
series quickly converges at medium and low temperatures, the three elements given are sufficient
at around 0 ... 300 K, if the margin of error should be smaller than 0.001 kG.

Again, for a better comparison with conventional representations, one can calculate the rota-
tional contribution to the molar heat capacity Cr, by taking the second derivative of µr(T ) with
respect to T . By omitting the intermediate calculation, one obtains the formula below which is
complicated in comparison to the expression for µr(T ). The result is represented grafically in
Figure 5.

Cr(T ) = R

(
Θr

T

)2
{

180 e−6Θr/T + 3600 e−20Θr/T

1 + 5 e−6Θr/T + 9 e−20Θr/T
−

[
30 e−6Θr/T + 180 e−20Θr/T

1 + 5 e−6Θr/T + 9 e−20Θr/T

]2
}

.
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Figure 5: The contribution Cr(T ) of molecular

rotation to the molar heat capacity of para hydrogen.

The rotational characteristic temperature Θr is 87.7

K. For calculations up to 300 K, the formula found

in the text is used. Only the three lowest levels

of rotation (J = 0, 2, 4) are taken into account.

Above 300 K, the fourth level (J = 6) is added.

Molecular velocity distribution

In order to derive the distribution of particle velocities in a gas, we will use the same device as
before. We conceive of all the particles with the same velocity vector vvv as molecules of a substance
B(vvv), and of the entire gas as a mixture of many such substances. At this point, we run into a
difficulty. The number of particles that have exactly the velocity vvv is, strictly speaking, zero. For
this reason we consider the velocity space to be divided into a lattice of cubes having edges of
length ∆v, where ∆v should be small in comparison to the width of the velocity distribution. All
the particles whose velocity vectors end within such a cube will be considered as molecules of the
same substance B(vvv).

Because particles moving in various directions cannot be distinguished from each other on
chemical grounds, we assign them the same reference potential µ0. Differing values of energy at
different absolute values of velocity, v = |vvv|, are taken into account by the term ε/τ = 1

2mv2/τ =
1
2Mv2, the molar kinetic energy of the substance:

µ(vvv) = µ0(0) +
1
2
Mv2 .

In the simplest case of a gas with particles without structure in a volume V , this approach can
be justified as follows. All the particles of the substance B(vvv) lie in a cell of the molecular phase
space that has a phase volume of (m∆v)3V and therefore comprises ζ = (m∆v)3V/h3 quantum
states. In the case of small enough ∆v, they all belong to the same energy level 1

2Mv2 (h: Planck

constant). Because ζ is the same in all cases, the substance B(vvv) fulfills the requirements of the
excitation formula in regards to number and energy of the molecular quantum state.

Change of velocity of the particles through frequent collisions with each other appears as trans-
formations of a simple type B(vvv) → B(vvv′). If we do not disturb the gas by having it stirred, or
through other kinds of interference, then all these processes reach a state of equilibrium within a
short time. The chemical potential µ will be the same for all substances B(vvv), so that according
to the mass action formula we have

µ = µ0 +
1
2
Mv2 + RT ln

c(vvv)
c0

for all vvv

where c(vvv) are the equilibrium values of the concentrations. By solving for c(vvv), we obtain the
desired distribution (compare to Figure 6):

c(vvv) = c0 · exp
(

µ− µ0(0)
RT

)

︸ ︷︷ ︸
c(0)

· exp
(− 1

2Mv2

RT

)
⇒ c(vvv) = c(0) exp

(
−m(v2

x + v2
y + v2

z)
2kT

)
.
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Figure 6: If we represent c(vvv) according to the

equation above as shading in three dimensional

velocity space, we obtain the spherical cloud given

at the left. The values are valid for nitrogen at 298 K.

Barometric formula

The distribution of a gas in a homogenous gravitational field can be extracted using the same
pattern as above. To do this, we consider the particles at a particular altitude h as molecules of a
substance B(h)7. The reference potentials µ0(h) of the chemically identical substances B(h) differ
only by the molar potential energy ε/τ = Mgh:

µ0(h) = µ0(0) + Mgh .

The exchange of particles between different altitudes is equivalent to the reactions B(h) → B(h′).
If the temperature is homogenous, equilibrium of all the substances is eventually reached. The
requirement for equilibrium is

µ = µ0 + Mgh + RT ln
c(h)
c0

with the potential µ being independent of h. Solving for c(h) yields the equation

c(h) = c0 · exp
(

µ− µ0(0)
RT

)

︸ ︷︷ ︸
c(0)

· exp
(

Mgh

RT

)
⇒ c(h) = c(0) · exp

(−mgh

kT

)
.

Equilibrium of sedimentation in a centrifuge

The centrifugal force upon a particle with a mass m at a distance r from the axis of rotation of a
centrifuge spinning with the angular velocity ω, is F = mω2r. It follows that the potential energy
relative to a point at a distance r0, is

ε =
∫ r

r0

Fdr = −1
2
mω2(r − r0)2 .

Along with the contribution ε/τ to the chemical potential, we have to take into account the pressure
dependence of the potential due to the high pressures in the solution being centrifuged. A linear

7Strictly speaking, in this type of procedure one should consider a layer of finite thickness ∆h so that the particle

number doesn’t vanish. In contrast to the last section where c(vvv) goes to zero for ∆v → 0 (proportional to (∆v)3), c(h)

is independent of ∆h for ∆h → 0 and stays finite so that the equations used above remain valid for ∆h = 0 as well.
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approach is sufficient here:
µ(p) = µ(p0) + Vm · (p− p0)

since the molar volume Vm of the condensed substance is only slightly dependent upon the pressure
p. We will now look at a centrifuged dilute solution of a substance B in a liquid A (Figure 7 on the
left). As a point of reference, we choose the fluid’s surface at a distance r0 from the axis of rotation.
If we neglect the tiny reduction of µA by the solved substance B, we have for the potentials µA

and µB of the substances A and B at a location inside the solution (r > r0):

µA(r) = µA(r0)− 1
2

MA ω2 (r2 − r2
0) + VA · [p(r)− p(r0)] ,

µB(r) = µB(r0)− 1
2

MB ω2 (r2 − r2
0) + VB · [p(r)− p(r0)] + RT ln

c(r)
c(r0)

.

Equilibrium is reached when the potentials have evened out everywhere so that µA(r) as well as
µB(r) have the same value everywhere. In this state, the terms µ(r) and µ(r0) in both equations
cancel so that we obtain the following quadratic relation for the pressure distribution in the solution
from the first one

p(r) = p(r0) +
1
2

ρA ω2 (r2 − r2
0)

Here, ρA = MA/VA is the density of the fluid A. When this result is inserted into the second
equation above, the desired concentration distribution is obtained:

[MB − ρAVB ] · 1
2

ω2 (r2 − r2
0) = RT ln

c(r)
c(r0)

⇒

c(r) = c(r0) · exp
(

[mB − ρAvB ] · ω2 · (r2 − r2
0)

2kT

)
.

vB = VB · τ specifies the volume and ρA · vB the mass of fluid displaced by a B particle. In other
words, ρA · vB is the apparent loss of mass of a B-particle as a result of buoyancy in the fluid. An
interesting point is that this hydro-mechanical correction is a result of the pressure dependence of
the chemical potentials. The fact that VB and vB can become negative due to denser packing of
A-molecules in the solvation sheath does not negate the principle of Archimedes at all.

Not much is changed if B is not dissolved but only suspended. One can consider particles of the
same diameter ∅ as molecules of a solved substance B(∅), and the entire suspension as a mixture
of such substances. For each substance B(∅) the equation derived above again holds.

Probability of an energy state

As the examples which we have observed have shown, the mass action and the excitation formulas,
µ(c) = µ0 + RT ln(c/c0) and µ(ε) = µ0 + ε/τ , together serve the same purpose as Boltzmann’s
principle. Taken together, they appear to be only a special representation of this principle; they are
closer to chemistry and well known in this guise, but badly applied. We obtain the conventional
version if we interpret the concentration c(ε, i) of the particle type B(ε, i) as a measure of the
probability p(ε, i) to find a particle B in a state with energy ε and parameter value i: p(ε, i)
∼ c(ε, i). The parameter i, that we take to be discrete, stands for some characteristic (spatial
orientation, spin orientation, conformation, etc.) by which – apart from ε – the individual types of
particle ensembles can be distinguished if applicable. One needs only to insert the second equation

10
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Figure 7: Sedimentation equilibrium in a centrifuge for a substance B (particle mass mB , particle volume vB) which

is either dissolved or suspended in a fluid with a density of ρA. If the centrifugal force becomes larger than the force of

buoyancy, the substance B concentrates toward the outside (upper container, upper curve), otherwise toward the inside

(lower container, lower curve).

ω angular velocity, r distance from the axis of rotation, r0 distance of the fluid surface from the axis of rotation, c

concentration of B, c(0) the value of c extrapolated to the axis of rotation; the curve parameter σ is the distance from

the axis in which the potential energy corrected by the effect of buoyancy is |mB − ρAvB | · 1
2
ω2σ2 = 1

2
kT .

into the first one and solve for c = c(ε, i):

c(ε, i) = c0 · exp
(

µ− µ0(0)
RT

)
· e−ε/kT ⇒ p(ε, i) ∼ e−ε/kT .

Statistical weights do not come up here because application of the excitation formula requires
that the individual types of particles are chosen to be equally weighted statistically. The stipulation
that the corresponding ”quantum states” of differing types of particles may differ by the same
energy value ε, but not in their number, means exactly this. If the usual question arises about
the probability p(ε) of finding a B-particle at the energy level ε, i.e., in a state with energy ε

independent of i, one needs only to add up the appropriate p(ε, i). Since all of these are equal, and
if their number is g(ε) (where g(ε) is the statistical weight of the energy level), we obtain

p(ε) ∼ g(ε) · e−ε/kT . (Boltzmann’s principle)

Outlook

Nothing speaks against relying upon Boltzmann’s principle in the usual way for further consid-
erations. We will, however, stay with the ”chemically more adjusted” description using chemical
potentials because similarities between the different fields, which usually stay hidden due to dif-
fering patterns of description, will become apparent. In order to demonstrate the significance of
the approach, additional molecular statistical examples from strongly differing fields of chemical
dynamics, will be considered.

The equivalence to Boltzmann’s principle, stressed in the last section, lets us suspect that
our approach must fail at one point. Boltzmann based his derivation upon the assumption
of individually distinguishable particles, which is unjustified from the view of quantum theory.
Conventional teaching says that all particles are either fermions and bosons. These only obey the
”Boltzmann statistics” when sufficiently diluted. Otherwise, they are subject to special ”quantum
statistics” as a result of the Pauli principle and the indistinguishability of particles in the same
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quantum state. For fermions, this is ”Fermi-Dirac statistics” and for bosons, ”Bose-Einstein

statistics”. A calculation of the absolute entropy can only be successful upon this basis whereby
indistinguishability of like particles also has consequences for highly diluted systems. The number
of possible micro-states of a system of N independent equal particles thus changes by a factor 1/N !
and the entropy by ∆S = −k ln N !.

We will see that our approach also works with problems of this sort. At this juncture, it is useful
to fall back upon surface chemistry because it gives us clear examples of systems with Fermi-Dirac

and Bose-Einstein distributions. We won’t have to waste any words on indistinguishability of
particles. We obtain the correct entropy values without even mentioning the factor 1/N !.
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