Dissolution of Marble in Hydrochloric Acid

Equipment:

goblet

Chemicals:

marble or "limestone" (calcium carbonate) in pieces (for example old marble plate) hydrochloric acid (1 molar)

Safety:

hydrochloric acid (HCl) (1 molar):

H290 P390, P406

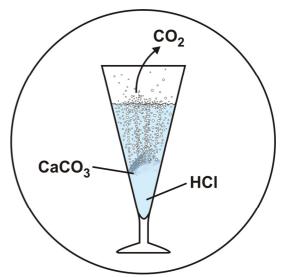
It is highly recommended to wear safety glasses.

Procedure:

Pieces of marble (or limestone) are put in hydrochloric acid, an aqueous solution of hydrogen chloride, HCI.

Observation:

A strong effervescence can be observed.


Explanation:

Calcium carbonate is dissolved by hydrochloric acid, thereby forming gaseous carbon dioxide:

$$\Sigma \mu^{\Theta}: \qquad \begin{array}{c} CaCO_{3}|s+2H^{+}|w \rightarrow Ca^{2+}|w+H_{2}O||+CO_{2}|g\\ \hline -1128.8 > -1185.1 & kG\\ \hline chemical drive \mathcal{A}^{\Theta}: +56.3 kG \end{array}$$

Thereby, we had to consider that HCI is a strong acid and is entirely dissociated into hydrogen and chloride ions, H^+ and CI^- . The H^+ ions are responsible for the reaction while the CI^- ions remain more or less inactive.

The chemical drive of the reaction is positive, i.e. the combined reactants have a higher chemical potential than the products and subsequently, the reaction takes place spontaneously.

Substance	Chemical potential μ^{Θ} [kG]
CaCO ₃ s	-1128.8
H⁺ w	0
Ca ²⁺ w	-553.6
H ₂ O I	– 237.1
CO ₂ g	-394.4

Necessary chemical potentials (T^{Θ} = 298 K, p^{Θ} = 100 kPa):

Disposal:

After the complete dissolution of the marble pieces, the produced solution is neutralised and flushed down the drain with water.